Cho a,b,c là các số thực thỏa mãn a≥1,b≥2,c≥3a≥1,b≥2,c≥3 và a+b+c=9.
Tìm GTNN của biểu thức P=\(\sqrt{a-1}\)+\(\sqrt{b-2}\)+\(\sqrt{c-3}\)
đăng chục lần rồi chưa thấy idol nào giúp
Cho các số thực không âm a, b, c thay đổi thỏa mãn \(a^2+b^2+c^2=1\). Tìm GTLN và GTNN của biểu thức \(Q=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
#Chuyên mục bất đẳng thức khởi động bước vào năm học mới#
Bài toán 41: Cho a, b, c là các số thực dương thỏa mãn\(a+b-c\ge0;b+c-a\ge0;c+a-b\ge0\)và \(\left(a+b+c\right)^2=4\left(ab+bc+ca-1\right)\)
Tìm GTNN của biểu thức \(S=\sqrt{\frac{a+b}{c}-1}+\sqrt{\frac{b+c}{a}-1}+\sqrt{\frac{c+a}{b}-1}+\frac{2\sqrt{2}}{\sqrt{a^2+b^2+c^2-2}}\)
Bài toán 46: Cho 3 số thực dương a, b, c thỏa mãn\(\sqrt{a-c}+\sqrt{b-c}=\sqrt{\frac{ab}{c}}\)
Tìm GTNN của biểu thức \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c^2}{a^2+b^2}\)
Cho a,b,c là các số thực thỏa mãn a+b+c=3. Tìm GTNN của biểu thức
\(M=\sqrt{4^a+9^b+16^c}+\sqrt{9^a+16^b+4^c}+\sqrt{16^a+4^b+9^c}\)
Cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\). Tìm giá trị lớn nhất nhất của biểu thức: \(P=\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2}-ac+a^2}\)
Cho các số thực dương thỏa mãn a+b+c lớn hơn hoặc bằng 6, tìm GTNN của biểu thức A=\(\sqrt[]{a^2+\frac{1}{b+c}}\)+\(\sqrt[]{b^2+\frac{1}{c+a}}\)+\(\sqrt{c^2+\frac{1}{a+b}}\)
Cho a,b,c là ba số thực dương thỏa mãn \(a^2+b^2+c^2\le3\)
Tìm GTNN của biểu thức \(P=\frac{1}{\sqrt{1+8a^3}}+\frac{1}{\sqrt{1+8b^3}}+\frac{1}{\sqrt{1+8c^3}}\)
1 . )
Cho 3 số a,b,c dương. Tìm giá trị lớn nhất của biểu thức
\(P=\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}\)
2
cho các số thực không âm a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Tìm giá trị nhỏ nhất của biểu thức
\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)
a,b,c là các số thực không âm thỏa mãn a+b+c=2. Tìm max và min của \(P=\sqrt{a+b^3c^3}+\sqrt{b+c^3a^3}+\sqrt{c+a^3b^3}\)