tìm nghiệm nguyên của pt 6x2+19y2+24x-2y+12xy-725
Tìm nghiệm nguyên của phương trình: 6x2+19y2+24x-2+12xy-725=0
Giải phương trình ngiệm nguyên:
a)\(6x^2+19x^2+24x-2y+12xy-725=0\)
b)\(x^2y^2-x^2-8y^2=2xy\)
c)\(x^3-y^3=xy+25\)
a/ Hình như bạn ghi nhầm đề
b/ \(\Leftrightarrow x^2y^2-7y^2=x^2+2xy+y^2\)
\(\Leftrightarrow y^2\left(x^2-7\right)=\left(x+y\right)^2\)
- Với \(y=0\Rightarrow x=0\)
- Với \(y\ne0\) do \(y^2\) và \(\left(x+y\right)^2\) đều là số chính phương \(\Rightarrow x^2-7\) là SCP
Đặt \(x^2-7=k^2\Leftrightarrow\left(x-k\right)\left(x+k\right)=7\)
Phương trình ước số cơ bản
c/ \(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)=xy+25\)
\(\Leftrightarrow\left(x-y\right)^3-25=xy\left(1-3\left(x-y\right)\right)\)
Đặt \(\left\{{}\begin{matrix}x-y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow a^2\ge-4b\Rightarrow b\ge-\frac{a^2}{4}\)
\(\Rightarrow a^3-25=b\left(1-3a\right)\)
\(\Leftrightarrow b=\frac{a^3-25}{1-3a}\ge-\frac{a^2}{4}\)
Do \(a\) nguyên \(\Rightarrow1\le a\le4\)
\(\Rightarrow a=\left\{1;2;3;4\right\}\) thay vào chỉ có \(a=1\Rightarrow b=12\) thỏa mãn
\(\Rightarrow\left\{{}\begin{matrix}x-y=1\\xy=12\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(4;3\right);\left(-3;-4\right)\)
giải pt nghiệm nguyên
\(5x^2+9y^2-12xy+8=24\left(2y-x-3\right)\)
\(5x^2+9y^2-12xy+8=24\left(2y-x-3\right)\)
\(\Leftrightarrow\left(2x-3y\right)^2+x^2+8-24\left(2y-x-3\right)=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+x^2-48y+24x+80=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+\left(32x-48y\right)+64+x^2-8x+16=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+2.\left(2x-3y\right).8+8^2+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2=0\)
Đến đây dễ rồi bạn tự làm tiếp nhé
làm tiếp bài của bạn Pham Trung Thanh
Ta thấy : \(\left(2x-3y+8\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
Cộng theo vế ta được : \(\left(2x-3y+8\right)^2+\left(y-4\right)^2\ge0\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}2x-3y+8=0\\x-4=0\end{cases}< =>\hept{\begin{cases}8-3y+8=0\\x=4\end{cases}}}\)
\(< =>\hept{\begin{cases}x=4\\16=3y< =>y=\frac{16}{3}\left(ktm\right)\end{cases}}\)
Vậy pt vô nghiệm nguyên
Tìm nghiệm nguyên của pt 2y² - x = 2y - xy + 3
\(2y^2-x=2y-xy+3\)
\(\Leftrightarrow\left(y-1\right)\left(2y+x\right)=3\)
2y^2-x=2y-xy+3
<=>2y^2-2y-x+xy=3
<=>2y(y-1)+x(y-1)=3
<=>(y-1)(2y+x)=3
=>y-1;2y+x thuộc ước của 3
tới đây bạn xét 4 TH là được nha
Chúc học tốt!
tìm Min của
K=x2+y2-xy-2y-2x
I=5x2+9y2-12xy=24x-48y+82
tìm nghiệm nguyên của pt \(6x^2y^3+3x^2-10y^3=-2\)
Lời giải:
Ta có:
$6x^2y^3+3x^2-10y^3=-2$
$\Leftrightarrow 2y^3(3x^2-5)+(3x^2-5)=-7$
$\Leftrightarrow (2y^3+1)(3x^2-5)=-7$
Vì $x,y$ nguyên nên $2y^3+1; 3x^2-5$ cũng đều nhận giá trị nguyên.
Đến đây ta xét các TH:
TH1: $2y^3+1=-1; 3x^2-5=7$
TH2: $2y^3+1=1; 3x^2-5=-7$
TH3: $2y^3+1=-7; 3x^2-5=1$
TH4: $2y^3+1=7; 3x^2-5=-1$
Giải lần lượt các TH ta được $x=\pm 2; y=-1$
Giải phương trình nghiệm nguyên
6x2 =y(y+1)(2y+1)
Rút gọn phân thức sau:
a) \(\dfrac{12xy^3z⁴}{24x^2y^3z^3}\)
b)\(\dfrac{3x-6}{6x^2-12x}\)
a: \(=\dfrac{12xy^3z^4}{24x^2y^3z^3}=\dfrac{1}{2}\cdot\dfrac{1}{x}\cdot z=\dfrac{z}{2x}\)
b: \(=\dfrac{3\left(x-2\right)}{6x\left(x-2\right)}=\dfrac{1}{2x}\)
Tìm nghiệm nguyên của PT: \(x^2y^2-xy=x^2=2y^2\)
Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm
sorry @Thắng Hoàng mình nhầm đề, phải là
\(x^2y^2-xy=x^2+2y^2\)