Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thế Phúc Anh
Xem chi tiết
Ánh Right
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 10 2019 lúc 11:42

a/ Hình như bạn ghi nhầm đề

b/ \(\Leftrightarrow x^2y^2-7y^2=x^2+2xy+y^2\)

\(\Leftrightarrow y^2\left(x^2-7\right)=\left(x+y\right)^2\)

- Với \(y=0\Rightarrow x=0\)

- Với \(y\ne0\) do \(y^2\)\(\left(x+y\right)^2\) đều là số chính phương \(\Rightarrow x^2-7\) là SCP

Đặt \(x^2-7=k^2\Leftrightarrow\left(x-k\right)\left(x+k\right)=7\)

Phương trình ước số cơ bản

c/ \(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)=xy+25\)

\(\Leftrightarrow\left(x-y\right)^3-25=xy\left(1-3\left(x-y\right)\right)\)

Đặt \(\left\{{}\begin{matrix}x-y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow a^2\ge-4b\Rightarrow b\ge-\frac{a^2}{4}\)

\(\Rightarrow a^3-25=b\left(1-3a\right)\)

\(\Leftrightarrow b=\frac{a^3-25}{1-3a}\ge-\frac{a^2}{4}\)

Do \(a\) nguyên \(\Rightarrow1\le a\le4\)

\(\Rightarrow a=\left\{1;2;3;4\right\}\) thay vào chỉ có \(a=1\Rightarrow b=12\) thỏa mãn

\(\Rightarrow\left\{{}\begin{matrix}x-y=1\\xy=12\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(4;3\right);\left(-3;-4\right)\)

Khách vãng lai đã xóa
Linh_Chi_chimte
Xem chi tiết
pham trung thanh
31 tháng 12 2017 lúc 10:40

\(5x^2+9y^2-12xy+8=24\left(2y-x-3\right)\)

\(\Leftrightarrow\left(2x-3y\right)^2+x^2+8-24\left(2y-x-3\right)=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+x^2-48y+24x+80=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+\left(32x-48y\right)+64+x^2-8x+16=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+2.\left(2x-3y\right).8+8^2+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2=0\)

Đến đây dễ rồi bạn tự làm tiếp nhé

Phan Nghĩa
9 tháng 8 2020 lúc 8:56

làm tiếp bài của bạn Pham Trung Thanh 

Ta thấy : \(\left(2x-3y+8\right)^2\ge0\)

\(\left(y-4\right)^2\ge0\)

Cộng theo vế ta được : \(\left(2x-3y+8\right)^2+\left(y-4\right)^2\ge0\)

Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}2x-3y+8=0\\x-4=0\end{cases}< =>\hept{\begin{cases}8-3y+8=0\\x=4\end{cases}}}\)

\(< =>\hept{\begin{cases}x=4\\16=3y< =>y=\frac{16}{3}\left(ktm\right)\end{cases}}\)

Vậy pt vô nghiệm nguyên

Khách vãng lai đã xóa
Kudo Shinichi
Xem chi tiết
alibaba nguyễn
28 tháng 12 2018 lúc 11:09

\(2y^2-x=2y-xy+3\)

\(\Leftrightarrow\left(y-1\right)\left(2y+x\right)=3\)

tran thu phuong
7 tháng 10 2019 lúc 12:49

2y^2-x=2y-xy+3
<=>2y^2-2y-x+xy=3
<=>2y(y-1)+x(y-1)=3
<=>(y-1)(2y+x)=3
=>y-1;2y+x thuộc ước của 3
tới đây bạn xét 4 TH là được nha

Chúc học tốt!

Vũ Thị Thảo Quyên
Xem chi tiết
em ơi
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 17:57

Lời giải:

Ta có:

$6x^2y^3+3x^2-10y^3=-2$

$\Leftrightarrow 2y^3(3x^2-5)+(3x^2-5)=-7$

$\Leftrightarrow (2y^3+1)(3x^2-5)=-7$

Vì $x,y$ nguyên nên $2y^3+1; 3x^2-5$ cũng đều nhận giá trị nguyên.

Đến đây ta xét các TH:

TH1: $2y^3+1=-1; 3x^2-5=7$

TH2: $2y^3+1=1; 3x^2-5=-7$

TH3: $2y^3+1=-7; 3x^2-5=1$

TH4: $2y^3+1=7; 3x^2-5=-1$

Giải lần lượt các TH ta được $x=\pm 2; y=-1$

 

Hoàng Nguyễn Huy
Xem chi tiết
Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 9:23

a: \(=\dfrac{12xy^3z^4}{24x^2y^3z^3}=\dfrac{1}{2}\cdot\dfrac{1}{x}\cdot z=\dfrac{z}{2x}\)

b: \(=\dfrac{3\left(x-2\right)}{6x\left(x-2\right)}=\dfrac{1}{2x}\)

Khương Vũ Phương Anh
Xem chi tiết
Thắng  Hoàng
6 tháng 1 2018 lúc 15:49

Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm 

Khương Vũ Phương Anh
6 tháng 1 2018 lúc 20:32

sorry @Thắng Hoàng mình nhầm đề, phải là

\(x^2y^2-xy=x^2+2y^2\)