Tính nhân (x − 4)(x + 3).
A. x\(^2\)+ 3x + 10
B. x\(^2\)− x − 12
C. x\(^2\)+ x − 12
D. x\(^2\)− x + 12
tìm các STN x, y sao cho :a) ( 2x+ 1)(y-3)=10b) (3x-2)(2y-3)c) (x+1)(2y-1)=12d) (x+6) = y(x - 1)e) x - 3 = y( x + 2 )
a) 3x = 5y = 7z và x+ y + z = 10
b) 6x = 5y ; 7y = 8z và 3x + 2y + 4z = 12
c) x : y : z = 1: 2 : 3 và x\(^3\) + y\(^3\) + 2\(^3\) = 36
d) \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) và 3x\(^3\) + y\(^3\) = 51
giúp mik vs rùi mik tick cho
a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)
áp dụng tính chất dãy tỉ số = nhau
\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)
\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)
\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)
\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)
b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)
có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)
\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)
áp dụng t/c dãy tỉ số = nhau
\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)
\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)
\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)
\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)
c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)
thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(=>y=2\)
\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)
d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)
thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)
\(=>x=\dfrac{2.3}{3}=2\)
Câu 1.Tính nhân 4x(x\(^2\)− 5x + 3).
A. 4x\(^3\)− 20x\(^2\) + 12x
B. 4x\(^3\)− 5x\(^2\)− 12x
C. 4x\(^2\)− 20x + 12
D. x\(^2\)− 5x + 12.
\(4x\left(x^2-5x+3\right)=4x^3-20x^2+12x\)
=> Chọn A
Giá trị của số tự nhiên x thỏa mãn điều kiện 5 + x = 2³ – 1 là: *
A. x = 10
B. x = 12
C. x = 0
D. x = 2
\(5+x=2^3-1\\ 5+x=8-1\\ 5+x=7\\ x=2\)
a) x phần 7 = 6 phần 21
b) 1 phần 2 = x phần 12
c) -7 phần 6 = x phần 12
d) âm x phần 7 = 6 phần
\(a,\dfrac{x}{7}=\dfrac{6}{21}\Rightarrow x.21=7.6=42\\ \Rightarrow x=2\\ b,\dfrac{1}{2}=\dfrac{x}{12}\Rightarrow1.12=2.x=12\\ \Rightarrow x=6\\ c,\dfrac{-7}{6}=\dfrac{x}{12}\Rightarrow-7.12=6.x=-84\\ \Rightarrow x=-14\)
Tìm x, biết:
a ) 3 4 + − 1 2 x = 1 b ) 1 6 : x − 1 3 = 1 2 c ) 2 5 − 3 x = 1 2 d ) 11 2 − 1 3 . ( x + 1 ) = 3 1 2
a ) x = − 1 2 b ) x = 1 5 c ) − 1 30 d ) x = 5
a, 5*(4x-1)+2*(1-3x)-6*(x+5)=10
b, 2x*(x+1)+3*(x-1)*(x+1)-5x*(x+1)+6x mũ 2 = 0
c, 4*(x-1)*(x+5)-(x+2)*(x+5)-3(x-1)*(x+2)=0
d,2*(5x-8)-3*(4x-5)=4*(3x-4)+11
a: Ta có: \(5\left(4x-1\right)+2\left(1-3x\right)-6\left(x+5\right)=10\)
\(\Leftrightarrow20x-5+2-6x-6x-30=10\)
\(\Leftrightarrow8x=43\)
hay \(x=\dfrac{43}{8}\)
b: ta có: \(2x\left(x+1\right)+3\left(x-1\right)\left(x+1\right)-5x\left(x+1\right)+6x^2=0\)
\(\Leftrightarrow2x^2+2x+3x^2-3-5x^2-5x+6x^2=0\)
\(\Leftrightarrow6x^2-3x-3=0\)
\(\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c: Ta có: \(4\left(x-1\right)\left(x+5\right)-\left(x+5\right)\left(x+2\right)-3\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow4\left(x^2+4x-5\right)-\left(x^2+7x+10\right)-3\left(x^2+x-2\right)=0\)
\(\Leftrightarrow4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0\)
\(\Leftrightarrow6x=24\)
hay x=4
d: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-5+1=-4\)
hay \(x=\dfrac{2}{7}\)
Cho bất phương trình - 4x + 12 > 0 . Phép biến đổi nào dưới đây đúng ?
A. 4x < 12 | ||||
B. x < - 12 | ||||
C. 4x > 12 | ||||
D. 4x > - 12 Khi x < 0 , kết quả rút gọn của biểu thức |- 4x| - 3x + 13 là :
|
Cho bất phương trình - 4x + 12 > 0 . Phép biến đổi nào dưới đây đúng ?
- 4x + 12 < 0
<=> -4x < - 12
<=> 4x > 12
C
Khi x < 0 , kết quả rút gọn của biểu thức |- 4x| - 3x + 13 là : |
\(\left|-4x\right|-3x+13=-4x-3x+13=-7x+13\)
=> D
Phân tích các đa thức sau thành nhân tử:
a, 2x^2+3x-27
b, x^2-7x-6
c, x^2+7x+12
d,x^2-10x+16
e,x^2-8x+15
g,x^2+6x+8
a) \(2x^2+3x-27\)
\(=2x^2+9x-6x-27\)
\(=x\left(2x+9\right)-3\left(2x+9\right)\)
\(=\left(2x+9\right)\left(x-3\right)\)
b) sửa đề thành \(x^2+7x+6\)
\(x^2+7x+6\)
\(=x^2+x+6x+6\)
\(=x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x+6\right)\)