so sánh tan50,cos50,sin50
A = sin40*cos50 + sin50*cos40
A= \(\frac{1}{2}\)[sin(-10)+sin90] +\(\frac{1}{2}\)(sin10+sin90)
A= \(\frac{1}{2}\)(-sin10 +1) +\(\frac{1}{2}\)(sin10 +1)
A=\(\frac{1}{2}\)(-sin10+sin10)+1
A= 1
Câu 1: Chứng minh
a) \(\dfrac{cosx+sin2x}{1+sinx-cos2x}=cotx\)
b) \(\dfrac{1+sin3x-cos6x}{cos3x+sin6x}=tan3x\)
Câu 2: Tính
a) cos10.cos50.cos70
b) sin10.sin50.sin70
c) cos20.cos40.cos60.cos60
d) sin20.sin40.sin60.sin80
Câu 3: Trong mặt phẳng Oxy, cho tam giác ABC có điểm A(-4;2) và đường cao CH : x-y-1=0; trung điểm của BC là I(-2;3). Tìm tọa độ đỉnh B
Câu 4: Trong mặt phẳng Oxy, cho tam giác ABC có điểm B(-1;2) và đường cao AH : x+y-2=0; trung điểm của AC là I(-2;1). Viết phương trình cạnh AC
Câu 5: Cho các số dương x,y thỏa mãn x+ y = \(\dfrac{1}{2}\). Tìm giá trị nhỏ nhất của
P=\(\dfrac{1}{x}+\dfrac{1}{y}\)
Câu 6: Cho số thực x thỏa mãn x>4. Tìm giá trị nhỏ nhất của \(Q=9x+\dfrac{1}{x-4}\)
Câu 7: Cho số dương x thỏa mãn 0 ≤ x ≤ 7. Tìm giá trị lớn nhất của \(Q=9x\left(7-x\right)\)
Câu 8: Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 - 2x + 2y - 7 = 0 và đường thẳng d: x + y + 1 = 0. Viết phương trình đường thẳng △ song song với đường thẳng d và cắt đường tròn (C) theo dây cung có độ dài bằng 2.
Câu 9: Trong mặt phẳng Oxy cho điểm A(-3;4) và đường thẳng d: 3x + 4y + 18 = 0. Viết phương trình đường tròn tâm A và cắt đường thẳng d theo dây cung có độ dài bằng 24
Câu 10: Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 - 2x + 2y - 7 =0 và đường thẳng d: x + y + 1=0. Viết phương trình đường thẳng △ song song với đường thẳng d và cắt đường tròn (C) theo dây cung AB sao cho tam giác ABI đều (I là tâm của (C))
Giúp em với ạ <3 Được câu nào hay câu đó :( tsau em thi rùi
Câu 5. Cho x,y dương thỏa mãn \(x+y=\dfrac{1}{2}\).Tìm giá trị nhỏ nhất của
\(P=\dfrac{1}{x}+\dfrac{1}{y}\)
Giải:
\(P=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{\dfrac{1}{2}}{xy}=\dfrac{2}{xy}\)
--> P nhỏ nhất khi \(xy\) lớn nhất
Ta có:
\(x^2+y^2\ge2xy\) ( BĐT AM-GM )
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow1\ge4xy\)
\(\Leftrightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow P\ge2:\dfrac{1}{4}=8\)
Vậy \(Min_P=8\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{4}\)
Không dùng bảng lượng giác và máy tính bỏ túi, hãy so sánh :
a) \(\sin25^0\) và \(\sin70^0\)
b) \(\cos40^0\) và \(\cos75^0\)
c) \(\sin38^0\) và \(\cos27^0\)
d) \(\sin50^0\) và \(\cos50^0\)
a: \(\sin25^0< \sin70^0\)
b: \(\cos40^0>\cos75^0\)
c: \(\sin38^0=\cos52^0< \cos27^0\)
d: \(\sin50^0=\cos40^0>\cos50^0\)
Không dùng MTBT , hãy sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần :
a) \(\cot40^o,\sin50^o,\tan70^o,\cos55^o\)
b) \(\sin49^o,\cot15^o,\tan65^o,\cos50^o,\cot41^o\)
Không sử dụng máy tính, hãy tính :
\(\dfrac{\sin40^0-\sin45^0+\sin50^0}{\cos40^0-\cos45^0+\cos50^0}-\dfrac{6\left(\sqrt{3}+3\tan15^0\right)}{3-\sqrt{3}\tan15^0}\)
Chú ý rằng: sin450 = cos450, sin400 = cos500, sin500 = cos400
Ta được:
\(\dfrac{\cos50^0-\cos45^0+\cos50^0}{\cos40^0-\cos45^0+\cos50^0}-\dfrac{6\times3\left(\dfrac{\sqrt{3}}{3}+\tan15^0\right)}{3\left(1-\dfrac{\sqrt{3}}{3}\tan15^0\right)}\)
\(=1-6\left(\dfrac{\tan30^0+\tan15^0}{1-\tan30^0\times\tan15^0}\right)\)
\(=1-6\tan45^0=-5\)
Thực hiện phép tính
a) \(\tan40^o.\cot40^o+\frac{\sin50^o}{\cos40^o}\)
b) \(\cot44^o.\cot45^o.\cot46^o\)
c)\(\left(1+\tan^225^o\right).\sin^265^o\)
d) \(\tan35^o.\tan40^o.\tan45^o.\tan50^o.\tan55^o\)
e) \(\cos^220^o+\cos^240^o+\cos^250^o+\cos^270^o\)
f) \(\sin^227^o+\cos^227^o+\tan27^o-\cot73^o\)
a/ \(\tan40.\cot40+\frac{\sin50}{\cos40}\)
\(=1+\frac{\cos40}{\cos40}=1+1=2\)
1. Biểu thức A = \(\frac{1}{2\sin10}-2\sin70\) có gái trị bằng bao nhiêu ?
2. Tích số cos10.cos30.cos50.cos70 = ?
3. Tích số \(cos\frac{\pi}{7}.cos\frac{4\pi}{7}.cos\frac{5\pi}{7}\) = ?
4. Tính A = \(\frac{tan30+tan40+tan50+tan60}{cos20}\)=?
5.Rút gọn biểu thức : cos54.cos4 - cos36.cos86
=> P/S : (Làm theo công thức lượng giác lớp 10 ở tất cả các câu)
Câu 3:
\(A=cos\frac{\pi}{7}.cos\frac{5\pi}{7}.cos\frac{4\pi}{7}=cos\frac{\pi}{7}.cos\left(\pi-\frac{2\pi}{7}\right).cos\frac{4\pi}{7}\)
\(A=-cos\frac{\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{2}.2sin\frac{\pi}{7}.cos\frac{\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{2}.sin\frac{2\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{4}sin\frac{4\pi}{7}.cos\frac{4\pi}{7}\)
\(\Rightarrow sin\frac{\pi}{7}.A=-\frac{1}{8}sin\frac{8\pi}{7}=-\frac{1}{8}sin\left(\pi+\frac{\pi}{7}\right)=\frac{1}{8}sin\frac{\pi}{7}\)
\(\Rightarrow A=\frac{1}{8}\)
Câu 4:
Đầu tiên ta chứng minh công thức:
\(tana+tanb=\frac{sina}{cosa}+\frac{sinb}{cosb}=\frac{sina.cosb+cosa.sinb}{cosa.cosb}=\frac{sin\left(a+b\right)}{cosa.cosb}\)
Áp dụng để biến đổi tử số:
\(tan30+tan60+tan40+tan50=\frac{sin90}{cos30.cos60}+\frac{sin90}{cos40.cos50}=\frac{1}{cos30.cos60}+\frac{1}{cos40.cos50}\)
\(=\frac{2}{cos90+cos30}+\frac{2}{cos90+cos10}=\frac{2}{cos30}+\frac{2}{cos10}=2\left(\frac{cos30+cos10}{cos30.cos10}\right)\)
\(=2\left(\frac{2cos20.cos10}{cos30.cos10}\right)=\frac{4.cos20}{cos30}=\frac{8\sqrt{3}}{3}.cos20\)
\(\Rightarrow A=\frac{\frac{8\sqrt{3}}{3}cos20}{cos20}=\frac{8\sqrt{3}}{3}\)
Câu 5:
\(cos54.cos4-cos36.cos86=cos54.cos4-cos\left(90-54\right).cos\left(90-4\right)\)
\(=cos54.cos4-sin54.sin4=cos\left(54+4\right)=cos58\)
Câu 1:
\(A=\frac{1}{2sin10}-2sin70=\frac{1-4sin10.sin70}{2sin10}=\frac{1+2\left(cos80-cos60\right)}{2sin10}\)
\(=\frac{1+2cos80-1}{2sin10}=\frac{2cos80}{2sin10}=\frac{sin10}{sin10}=1\)
Câu 2:
\(cos10.cos30.cos50.cos70=cos10.cos30.\frac{1}{2}\left(cos120+cos20\right)\)
\(=\frac{1}{2}cos30\left(cos10.cos120+cos10.cos20\right)\)
\(=\frac{1}{2}cos30\left(cos10.cos120+\frac{1}{2}\left(cos30+cos10\right)\right)\)
\(=\frac{1}{2}cos30\left(cos10.cos120+\frac{1}{2}cos30+\frac{1}{2}cos10\right)\)
\(=\frac{1}{2}.\frac{\sqrt{3}}{2}\left(-\frac{1}{2}cos10+\frac{1}{2}\frac{\sqrt{3}}{2}+\frac{1}{2}cos10\right)\)
\(=\frac{3}{16}\)
sắp xếp theo thứ tự tăng dần: tan70, tan50, cot60, cot65
\(\cot65^0=\tan25^0< \cot60^0=\tan30^0< \tan50^0< \tan70^0\)
Giải pt sau:
cos(2x-18)tan50+sin(2x-18)=\(\dfrac{1}{2cos130}\)
\(cos\left(2x-18^o\right).tan50^0+sin\left(2x-18^o\right)=\dfrac{1}{2cos130^0}\)
⇔\(cos\left(2x-18^o\right).sin50^0+sin\left(2x-18^o\right).cos50^0=\dfrac{cos50^0}{2cos130^0}\)
(Nhân cả 2 vế với cos500)
⇔ sin (500 + 2x - 180) = \(-\dfrac{1}{2}\)
⇔ \(\left[{}\begin{matrix}2x+32^0=-30^0+k.360^0\\2x+32^0=210^0+k.360^0\end{matrix}\right.\) với k là số nguyên