Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quyên Teo
Xem chi tiết
nthv_.
27 tháng 10 2021 lúc 18:01

ĐK: \(x+2\ge0\Leftrightarrow x\ge-2\)

\(3\sqrt{x+2}-\sqrt{x+2}-4\sqrt{x+2}=-10\)

\(-2\sqrt{x+2}=-10\)

\(\sqrt{x+2}=5\)

\(\left\{{}\begin{matrix}5\ge0\left(ld\right)\\x+2=25\end{matrix}\right.\)\(\Leftrightarrow x=23\left(n\right)\)

Đặng Tuyết Đoan
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2021 lúc 20:31

a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)

\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

\(\Leftrightarrow4\sqrt{x-3}=20\)

\(\Leftrightarrow x-3=25\)

hay x=28

b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7

Anh Quynh
Xem chi tiết
Minh Hiếu
4 tháng 10 2021 lúc 19:58

c) \(\sqrt{\left(x-2\right)^2}=10\)

\(x-2=10\)

\(x=12\)

d) \(\sqrt{9x^2-6x+1}=15\)

\(\sqrt{\left(3x\right)^2-2.3x.1+1^2}=15\)

\(\sqrt{\left(3x-1\right)^2}=15\)

\(3x-1=15\)

\(3x=16\)

\(x=\dfrac{16}{3}\)

Lấp La Lấp Lánh
4 tháng 10 2021 lúc 19:59

a) \(đk:x\ge0\)

\(pt\Leftrightarrow3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)

\(\Leftrightarrow4\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=3\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\)

b) \(đk:x\ge-2\)

\(pt\Leftrightarrow3\sqrt{x+2}+12\sqrt{x+2}-2\sqrt{x+2}=26\)

\(\Leftrightarrow13\sqrt{x+2}=26\)

\(\Leftrightarrow\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(tm\right)\)

c) \(pt\Leftrightarrow\left|x-2\right|=10\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=10\\x-2=-10\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-8\end{matrix}\right.\)

d) \(pt\Leftrightarrow\sqrt{\left(3x-1\right)^2}=15\)

\(\Leftrightarrow\left|3x-1\right|=15\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=15\\3x-1=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{3}\\x=-\dfrac{14}{3}\end{matrix}\right.\)

e) \(đk:x\ge\dfrac{8}{3}\)

\(pt\Leftrightarrow3x+4=9x^2-48x+64\)

\(\Leftrightarrow9x^2-51x+60=0\)

\(\Leftrightarrow3\left(x-4\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

hưng phúc
4 tháng 10 2021 lúc 20:15

a. \(\sqrt{18x}+2\sqrt{8x}-3\sqrt{2x}=12\)      ĐK: \(x\ge0\)

<=> \(\sqrt{9.2x}+2\sqrt{4.2x}-3\sqrt{2x}=12\)

<=> \(3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)

<=> \(\sqrt{2x}\left(3+4-3\right)=12\)

<=> \(4\sqrt{2x}=12\)

<=> \(\sqrt{2x}=12:4\)

<=> \(\sqrt{2x}=3\)

<=> 2x = 32

<=> 2x = 9

<=> \(x=\dfrac{9}{2}\) (TM)

b. \(\sqrt{9x+18}+2\sqrt{36x+72}-\sqrt{4x+8}=26\)          ĐK: \(x\ge-2\)

<=> \(\sqrt{9\left(x+2\right)}+2\sqrt{36\left(x+2\right)}-\sqrt{4\left(x+2\right)}=26\)

<=> \(3\sqrt{x+2}+72\sqrt{x+2}-2\sqrt{x+2}=26\)

<=> \(\sqrt{x+2}\left(3+72-2\right)=26\)

<=> \(73\sqrt{x+2}=26\)

<=> \(\sqrt{x+2}=\dfrac{26}{73}\)

<=> x + 2 = \(\left(\dfrac{26}{73}\right)^2\)

<=> x + 2 = \(\dfrac{676}{5329}\)

<=> \(x=\dfrac{676}{5329}-2\)

<=> \(x=-1,873146932\) (TM)

c. \(\sqrt{\left(x-2\right)^2}=10\)

<=> \(\left|x-2\right|=10\)

<=> \(\left[{}\begin{matrix}x-2=10\left(x\ge2\right)\\x-2=-10\left(x< 2\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=12\left(TM\right)\\x=-8\left(TM\right)\end{matrix}\right.\)

d. \(\sqrt{9x^2-6x+1}=15\)

<=> \(\sqrt{\left(3x-1\right)^2}=15\)

<=> \(\left|3x-1\right|=15\)

<=> \(\left[{}\begin{matrix}3x-1=15\left(x\ge\dfrac{16}{3}\right)\\3x-1=-15\left(x< \dfrac{16}{3}\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{16}{3}\left(TM\right)\\x=\dfrac{-14}{3}\left(TM\right)\end{matrix}\right.\)

e. \(\sqrt{3x+4}=3x-8\)        ĐK: \(x\ge\dfrac{-4}{3}\)

<=> 3x + 4 = (3x - 8)2

<=> 3x + 4 = 9x2 - 48x + 64

<=> 9x2 - 3x - 48x + 64 - 4 = 0

<=> 9x2 - 51x + 60 = 0

<=> 9x2 - 36x - 15x + 60 = 0

<=> 9x(x - 4) - 15(x - 4) = 0

<=> (9x - 15)(x - 4) = 0

<=> \(\left[{}\begin{matrix}9x-15=0\\x-4=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{15}{9}\left(TM\right)\\x=4\left(TM\right)\end{matrix}\right.\)

Duy Saker Hy
Xem chi tiết
KAl(SO4)2·12H2O
28 tháng 9 2019 lúc 15:23

2) \(\frac{1}{5}\sqrt{25x+50}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}\sqrt{25\left(x+2\right)}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.\sqrt{25}.\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9x+18}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9\left(x+2\right)}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+\sqrt{9}.\sqrt{x+2}+9=0\)

\(\frac{1}{5}.5\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)

\(\sqrt{x+2}-5\sqrt{x+2}+3\sqrt{x+2}+9=0\)

\(-\sqrt{x+2}=-9\)

\(x+2=81\)

\(\Rightarrow x=79\)

3) \(\sqrt{x^2-4x+4}=7x-1\)

\(\sqrt{x^2-2.x.2+2^2}=7x-1\)

\(\sqrt{\left(x-2\right)^2}=7x-1\)

\(x-2=7x-1\)

\(-2=7x-1-x\)

\(-2+1=7x-x\)

\(-1=6x\)

\(-\frac{1}{6}=x\)

\(\Rightarrow x=-\frac{1}{6}\)

Yến Nhi
Xem chi tiết
Tạ Đức Hoàng Anh
12 tháng 9 2020 lúc 21:23

a) Ta có: \(\sqrt{4x-8}+5\sqrt{x-2}-\sqrt{9x-18}=20\)       \(\left(ĐK:x\ge2\right)\)

        \(\Leftrightarrow\sqrt{4}.\sqrt{x-2}+5\sqrt{x-2}-\sqrt{9}.\sqrt{x-2}=20\)

        \(\Leftrightarrow2.\sqrt{x-2}+5\sqrt{x-2}-3.\sqrt{x-2}=20\)

        \(\Leftrightarrow4.\sqrt{x-2}=20\)

        \(\Leftrightarrow\sqrt{x-2}=5\)

        \(\Leftrightarrow x-2=25\)

        \(\Leftrightarrow x=27\left(TM\right)\)

Vậy \(S=\left\{27\right\}\)

Khách vãng lai đã xóa
ミ★Ƙαї★彡
12 tháng 9 2020 lúc 21:26

a, PT <=> \(2\sqrt{x-2}+5\sqrt{x-2}-\sqrt{9\left(x-2\right)}=20\)

\(2\sqrt{x-2}+5\sqrt{x-2}-\sqrt{9}\sqrt{x-2}=20\)

\(\left(2+5-3\right)\sqrt{x-2}=20\)

\(4\sqrt{x-2}=20\Leftrightarrow\sqrt{x-2}=5\Leftrightarrow x-2=25\Leftrightarrow x=27\)

Khách vãng lai đã xóa
Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2021 lúc 20:34

a) Ta có: \(\sqrt{25x+75}+2\sqrt{9x+27}=5\sqrt{x+3}+18\)

\(\Leftrightarrow5\sqrt{x+3}+6\sqrt{x+3}-5\sqrt{x+3}=18\)

\(\Leftrightarrow\sqrt{x+3}=3\)

\(\Leftrightarrow x+3=9\)

hay x=6

b) Ta có: \(\sqrt{4x-8}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)

\(\Leftrightarrow2\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)

\(\Leftrightarrow-3\sqrt{x-2}=8\)(Vô lý)

Mũ Rơm
Xem chi tiết
Hoàng
25 tháng 9 2019 lúc 20:52

Ta có:5\(\sqrt{x-2}\)=10+\(\sqrt{9\text{x}-18}\)

<=>5\(\sqrt{x-2}\)=10+\(\sqrt{9\left(x-2\right)}\)

<=>5\(\sqrt{x-2}\)=10+3\(\sqrt{x-2}\)

<=>5\(\sqrt{x-2}\) - 3\(\sqrt{x-2}\)=10

<=>2\(\sqrt{x-2}\)=10

<=>\(\sqrt{x-2}\)=5

<=>\(\sqrt{x-2}\)=\(\sqrt{25}\)

<=>x-2=25

<=>x=25+2=27

Vậy x có giá trị là 27

Nguyễn Huyền Trâm
25 tháng 9 2019 lúc 20:43

Tìm \(x\)

\(5\sqrt{x-2} = 10+\sqrt{9x-18}\)

<=> \(5\sqrt{x-2} = 10+\sqrt{9(x-2)}\)

<=> \(5\sqrt{x-2} = 10+3\sqrt{x-2}\)

<=> \(5\sqrt{x-2} - 3\sqrt{x-2} = 10\)

<=> \(2\sqrt{x-2} = 10\)

<=> \(\sqrt{x-2} = 5\)

<=> \(\sqrt{(x-2)^2} = 5^2\)

<=> \(|x-2|=25\)

* \(x-2=25\)

<=> \(x=27\)

* \(-x-2=25\)

<=> \(-x=27\)

<=> \(x=-27\)

Vậy \(x = 27 \) hoặc \(x=-27\)

Ly Ly
Xem chi tiết
An Thy
4 tháng 7 2021 lúc 16:45

a) \(\sqrt{\left(x-3\right)^2}=2\Rightarrow\left|x-3\right|=2\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Rightarrow\sqrt{9\left(x+2\right)}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25\left(x+2\right)}=6\)

\(\Rightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Rightarrow2\sqrt{x+2}=6\Rightarrow\sqrt{x+2}=3\Rightarrow x+2=9\Rightarrow x=7\)

\(Q=\dfrac{1}{x-2\sqrt{x}+3}\)

Ta có: \(x-2\sqrt{x}+3=x-2\sqrt{x}+1+2=\left(\sqrt{x}-1\right)^2+2\ge2\)

\(\Rightarrow\dfrac{1}{x-2\sqrt{x}+3}\le2\Rightarrow Q_{max}=2\) khi \(x=1\)

Dragon ball heroes Music
Xem chi tiết
Dragon ball heroes Music
18 tháng 9 2021 lúc 15:30

Tìm x để căn có nghĩa ak mn giúp e với ak

Nguyễn Hoàng Minh
18 tháng 9 2021 lúc 15:35

\(a,ĐK:\dfrac{3}{x+7}\ge0\Leftrightarrow x+7>0\left(3>0;x+7\ne0\right)\Leftrightarrow x>-7\\ b,ĐK:\dfrac{-2}{5-x}\ge0\Leftrightarrow5-x< 0\left(2-< 0;5-x\ne0\right)\Leftrightarrow x>5\\ c,ĐK:x^2-7x+10\ge0\Leftrightarrow\left(x-5\right)\left(x-2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5\ge0\\x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5\le0\\x-2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)

\(d,ĐK:x^2-8x+10\ge0\Leftrightarrow\left(x-4-\sqrt{6}\right)\left(x-4+\sqrt{6}\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-4-\sqrt{6}\ge0\\x-4+\sqrt{6}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-4-\sqrt{6}\le0\\x-4+\sqrt{6}\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge4+\sqrt{6}\\x\ge4-\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\)

\(e,ĐK:9x^2+1\ge0\Leftrightarrow x\in R\left(9x^2+1\ge1>0\right)\)

Lấp La Lấp Lánh
18 tháng 9 2021 lúc 15:37

a) \(ĐK:x+7>0\Leftrightarrow x>-7\)

b) \(ĐK:5-x< 0\Leftrightarrow x>5\)

c) \(ĐK:x^2-7x+10\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x-5\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)

d) \(ĐK:x^2-8x+10\ge0\)

\(\Leftrightarrow\left(x-4-\sqrt{6}\right)\left(x-4+\sqrt{6}\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\)

e) Do \(9x^2+1\ge1>0\)

Nên biểu thức được xác định với mọi x