Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
anh phuong
Xem chi tiết
Hoàng Việt Tân
25 tháng 2 2022 lúc 20:48

a) Để m đạt giá trị lớn nhất là 0 thì \(y=\left(3m-4\right)x^2\le0\) ⇔ \(3m-4\le0\)

                                                                                       ⇔ \(m\le\dfrac{4}{3}\) nhưng theo điều kiện  

                                                                                             thì m ≠ \(\dfrac{4}{3}\)

➤ Để m đạt giá trị lớn nhất là 0 thì \(m< \dfrac{4}{3}\)

b) Để m đạt giá trị nhỏ nhất là 0 thì \(y=\left(3m-4\right)x^2\ge0\) ⇔ \(3m-4\ge0\)

                                                                                       ⇔ \(m\ge\dfrac{4}{3}\) nhưng theo điều kiện  

                                                                                           thì m ≠ \(\dfrac{4}{3}\)

➤ Để m đạt giá trị nhỏ nhất là 0 thì \(m>\dfrac{4}{3}\)

                                                                                        

 

Yuki Sakura
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2021 lúc 22:09

Câu 1: 

a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)

\(\Leftrightarrow3m< -5\)

hay \(m< -\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)

b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì

3m+5>0

\(\Leftrightarrow3m>-5\)

hay \(m>-\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)

Nguyễn Việt Lâm
23 tháng 2 2021 lúc 22:41

2.

Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)

\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)

\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)

Để hàm đồng biến khi x>0

\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)

\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)

Shuu
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2022 lúc 12:58

\(y'=4x^3-4mx\Rightarrow y'\left(1\right)=4-4m\)

\(A\left(1;1-m\right)\)

Phương trình tiếp tuyến d tại A có dạng:

\(y=\left(4-4m\right)\left(x-1\right)+1-m\)

\(\Leftrightarrow\left(4-4m\right)x-y+3m-3=0\)

\(d\left(B;d\right)=\dfrac{\left|\dfrac{3}{4}\left(4-4m\right)-1+3m-3\right|}{\sqrt{\left(4-4m\right)^2+1}}=\dfrac{1}{\sqrt{\left(4-4m\right)^2+1}}\le1\)

Dấu "=" xảy ra khi và chỉ khi \(4-4m=0\Rightarrow m=1\)

Võ Quang Nhân
29 tháng 5 2022 lúc 18:47

y′=4x3−4mx⇒y′(1)=4−4my′=4x3−4mx⇒y′(1)=4−4m

A(1;1−m)A(1;1−m)

Phương trình tiếp tuyến d tại A có dạng:

y=(4−4m)(x−1)+1−my=(4−4m)(x−1)+1−m

⇔(4−4m)x−y+3m−3=0⇔(4−4m)x−y+3m−3=0

Shuu
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 6 2017 lúc 18:27

Chọn C

Tập xác định của hàm số là ℝ .

Ta có: 

Vì trên khoảng  - 4 3 ; 0  hàm số đạt giá trị lớn nhất tại x = -1 nên hàm số đạt cực trị tại x = -1( cũng là điểm cực đại của hàm số) và a > 0.

Khi đó f'(x) = 0 ( đều là các nghiệm đơn)

Hàm số đạt cực đại tại x = -1 nên có bảng biến thiên:

=> x = - 3 2 là điểm cực tiểu duy nhất thuộc  - 2 ; - 5 4  

Vậy hàm số đạt giá trị nhỏ nhất tại x =  - 3 2  trên đoạn  - 2 ; - 5 4

Etermintrude💫
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 10:24

a,nghịch biến x<0

`<=>4m+2<0`

`<=>4m< -2`

`<=>m< -1/2`

`b,(4m+2)x^2<=0`

Mà `x^2>=0`

`<=>4m+2<0`

`<=>4m<-2`

`<=>m<-1/2`

Nguyễn Lê Phước Thịnh
28 tháng 2 2021 lúc 10:27

a) Để hàm số nghịch biến với mọi x<0 thì 4m+2>0

\(\Leftrightarrow4m>-2\)

hay \(m>-\dfrac{1}{2}\)

Vậy: Để hàm số nghịch biến với mọi x<0 thì \(m>-\dfrac{1}{2}\)

b) Để hàm số đạt giá trị lớn nhất là 0 thì 4m+2<0

hay \(m< -\dfrac{1}{2}\)

Shuu
Xem chi tiết
Hoàng
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2021 lúc 22:00

\(\dfrac{1}{y}=\dfrac{x^2+2x+1}{x}=x+\dfrac{1}{x}+2\ge2\sqrt{x.\dfrac{1}{x}}+2=4\)

\(\Rightarrow y\le\dfrac{1}{4}\)

\(y_{max}=4\) khi \(x=1\)