Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:46

a) Ta có

\(\begin{array}{l}\overrightarrow m  + \overrightarrow n  = \left( {\left( { - 6 + 0} \right);1 + 2} \right) = ( - 6;3)\\\overrightarrow m  - \overrightarrow n  = \left( {\left( { - 6 - 0} \right);\left( {1 - 2} \right)} \right) = \left( { - 6; - 1} \right)\\10\overrightarrow m  = (10.( - 6);10.1) = ( - 60;10)\\ - 4\overrightarrow n  = (( - 4).0;( - 4).2) = (0; - 8)\end{array}\)

b) Ta có

\(\overrightarrow m .\overrightarrow n  = ( - 6).0 + 1.2 = 0 + 2 = 2\)

Ta có \(10\overrightarrow m  = ( - 60;10)\) và \( - 4\overrightarrow n  = (0; - 8)\) nên \(\left( {10\overrightarrow m } \right).\left( { - 4\overrightarrow n } \right) = ( - 60).0 + 10.( - 8) = 0 - 80 =  - 80\)

Khoẻ Nguyển Minh
Xem chi tiết
Phú Phạm Minh
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 10 2020 lúc 17:58

Dựng hình bình hành ABDC \(\Rightarrow\overrightarrow{AB}=-\overrightarrow{DC}\) ; \(\overrightarrow{AC}=-\overrightarrow{DB}\)

a/

\(\left|\overrightarrow{MC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\Leftrightarrow\left|\overrightarrow{MD}+\overrightarrow{DC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\)

\(\Leftrightarrow\left|\overrightarrow{MD}\right|=\left|\overrightarrow{MA}\right|\)

\(\Rightarrow\) Tập hợp M là trung trực của đoạn thẳng AD

b/ \(\left|\overrightarrow{MA}+\overrightarrow{AC}\right|=\left|\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{AC}\right|\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MB}+\overrightarrow{AC}\right|\)

\(\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MD}+\overrightarrow{DB}+\overrightarrow{AC}\right|\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MD}\right|\)

Tập hợp M là trung trực đoạn CD

c/Dựng hình bình hành AEBC \(\Rightarrow\overrightarrow{EB}=-\overrightarrow{CA}\)

\(\left|\overrightarrow{MB}+\overrightarrow{CA}\right|=\left|\overrightarrow{MC}+\overrightarrow{BM}\right|\Leftrightarrow\left|\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{CA}\right|=\left|\overrightarrow{BC}\right|\)

\(\Leftrightarrow\left|\overrightarrow{ME}\right|=\left|\overrightarrow{BC}\right|\)

Tập hợp M là đường tròn tâm E bán kính BC

Khách vãng lai đã xóa
DuaHaupro1
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2022 lúc 23:22

\(\overrightarrow{m}=2\left(1;2\right)+3\left(3;4\right)=\left(2;4\right)+\left(9;12\right)=\left(11;16\right)\)

byun aegi park
Xem chi tiết
Hồng Quang
14 tháng 7 2019 lúc 21:51

b) \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|\) khi vectơ a và vectơ b cùng hướng

Hồng Quang
18 tháng 7 2019 lúc 9:55

Chương 1: VEC TƠ

Queen Material
Xem chi tiết
Nhật Phong Vũ
23 tháng 10 2018 lúc 18:26

a) gọi I là trung điểm của đoạn thẳng AB

=> IA+ IB=0

| 2MI|= |BA|

|MI|= 1/2|BA|

=> M thuộc đường tròn tâm I, bán kính =1/2 BA

Nhật Phong Vũ
23 tháng 10 2018 lúc 18:29

B) gọi G là trọng tâm của tam giác ABC

=> GA+ GB+ GC=0

gọi I là trung điểm của đoạn thẳng AB

=> IA+ IB=0

| 3MG|= 3/2| 2 MI|

3| MG|= 3| MI|

| MG|= | MI|

=> M thuộc đường trung trực của đoạn thẳng GI

Nhật Phong Vũ
23 tháng 10 2018 lúc 18:35

gọi JA+ 2JB+ JC=0

I là trung điểm đoạn AB

| 3MJ|= | 2 CI|

| MJ|=2/3| CI|

=> M thuộc đường tròn tâm J, bán kính = 2/3 CI

tran duc huy
Xem chi tiết
Hồng Phúc
6 tháng 11 2020 lúc 11:24

d, Lấy P, Q sao cho \(4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0};2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}=\overrightarrow{0}\)

Ta có \(\left|4\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|4\text{ }\overrightarrow{MP}+4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}\right|=\left|4\overrightarrow{MP}\right|=4MP\)

\(\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|=\text{ }\left|2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}\right|=0\)

\(\Rightarrow4MP=0\Rightarrow M\equiv P\)

Khách vãng lai đã xóa
Hồng Phúc
6 tháng 11 2020 lúc 11:10

Gọi G là trọng tâm tam giác, I là trung điểm BC, N là trung điểm của AC

a, Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\)

\(\Rightarrow MG=MI\Rightarrow M\) thuộc đường trung trực của BC

b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MN}\right|=2MN\)

\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{BA}\right|=BA\)

\(\Rightarrow2MN=BA\Rightarrow M\in\left(N;\frac{BA}{2}\right)\)

Khách vãng lai đã xóa
Hồng Phúc
6 tháng 11 2020 lúc 11:19

c, Lấy điểm E thỏa mãn \(2\overrightarrow{EA}+\overrightarrow{EB}=\overrightarrow{0}\), F thỏa mãn \(4\overrightarrow{FB}-\overrightarrow{FC}=\overrightarrow{0}\)

Ta có \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|2\overrightarrow{ME}+2\overrightarrow{EA}+\overrightarrow{ME}+\overrightarrow{EB}\right|=\left|3\overrightarrow{ME}\right|=3ME\)

\(\left|4\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|4\overrightarrow{MF}+4\overrightarrow{FB}-\overrightarrow{MF}-\overrightarrow{FC}\right|=\left|3\overrightarrow{MF}\right|=3MF\)

\(\Rightarrow ME=MF\Rightarrow M\) thuộc đường trung trực EF

Khách vãng lai đã xóa
Thầy Cao Đô
Xem chi tiết

\(\left|\overrightarrow{a}-2\cdot\overrightarrow{b}\right|=\sqrt{15}\)

=>\(\left(\overrightarrow{a}-2\cdot\overrightarrow{b}\right)\left(\overrightarrow{a}-2\cdot\overrightarrow{b}\right)=15\)

=>\(\overrightarrow{a}\cdot\overrightarrow{a}-4\cdot\overrightarrow{a}\cdot\overrightarrow{b}+4\cdot\overrightarrow{b}\cdot\overrightarrow{b}=15\)

=>\(\left(\left|\overrightarrow{a}\right|\right)^2-4\cdot\overrightarrow{a}\cdot\overrightarrow{b}+4\cdot\left(\overrightarrow{b}\right)^2=15\)

=>\(1^2+4\cdot2^2-4\cdot\overrightarrow{a}\cdot\overrightarrow{b}=15\)

=>\(4\cdot\overrightarrow{a}\cdot\overrightarrow{b}=1+16-15=2\)

=>\(\overrightarrow{a}\cdot\overrightarrow{b}=\frac12\)

b: \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(2k\cdot\overrightarrow{a}-\overrightarrow{b}\right)\)

\(=2k\cdot\overrightarrow{a}\cdot\overrightarrow{a}-\overrightarrow{a}\cdot\overrightarrow{b}+2k\cdot\overrightarrow{a}\cdot\overrightarrow{b}-\overrightarrow{b}\cdot\overrightarrow{b}\)

\(=2k\cdot\left(\left|\overrightarrow{a}\right|\right)^2+\overrightarrow{a}\cdot\overrightarrow{b}\left(2k-1\right)-\left(\overrightarrow{b}\right)^2\)

\(=2k\cdot1^2+\left(2k-1\right)\cdot\frac12-2^2=2k+k-\frac12-4=3k-\frac92\)

\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left(\left|\overrightarrow{a}\right|\right)^2+2\cdot\overrightarrow{a}\cdot\overrightarrow{b}+\left(\left|\overrightarrow{b}\right|\right)^2\)

\(=1^2+2^2+2\cdot\frac12=5+1=6\)

=>\(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\sqrt6\)

\(\left(2k\cdot\overrightarrow{a}-\overrightarrow{b}\right)^2=4k^2\cdot\left(\left|\overrightarrow{a}\right|\right)^2-2\cdot2k\cdot\overrightarrow{a}\cdot\overrightarrow{b}+\left(\overrightarrow{b}\right)^2\)

\(=4k^2\cdot1-4k\cdot\frac12+4=4k^2-2k+4\)

=>\(\left|2k\cdot\overrightarrow{a}-\overrightarrow{b}\right|=\sqrt{4k^2-2k+4}\)

\(cos\left(\left(\overrightarrow{a}+\overrightarrow{b}\right);\left(2k\cdot\overrightarrow{a}-\overrightarrow{b}\right)\right)=cos60^0=\frac12\)

=>\(\frac{3k-4,5}{\sqrt{6\left(4k^2-2k+4\right)}}=\frac12\)

=>\(\sqrt{\frac{\left(3k-4,5\right)^2}{6\left(4k^2-2k+4\right)}}=\frac12\)

=>\(\frac{\left(3k-4,5\right)^2}{6\left(4k^2-2k+4\right)}=\frac14\)

=>\(6\left(4k^2-2k+4\right)=4\left(3k-4,5\right)^2\)

=>\(4\left(9k^2-27k+20,25\right)=6\left(4k^2-2k+4\right)\)

=>\(36k^2-108k+81=24k^2-12k+24\)

=>\(12k^2-96k+57=0\)

=>\(4k^2-32k+19=0\)

=>\(k=\frac{8\pm3\sqrt5}{2}\)

Nguyen Tu Le
Xem chi tiết
Nguyễn Việt Anh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2022 lúc 0:35

a.

Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)

\(=\left|3\overrightarrow{MG}\right|=3\left|\overrightarrow{MG}\right|\)

\(\Rightarrow T_{min}\) khi và chỉ khi \(MG_{min}\Rightarrow MG=0\) hay M trùng G

Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_M=\dfrac{2-1+6}{3}=\dfrac{7}{3}\\y_M=\dfrac{3-1+0}{3}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{7}{3};\dfrac{2}{3}\right)\)

b.

Tương tự câu a, ta có \(T=3\left|\overrightarrow{MG}\right|\) đạt min  khi MG đạt min

\(\Rightarrow\) M là hình chiếu vuông góc của G lên Ox

Mà \(G\left(\dfrac{7}{3};\dfrac{2}{3}\right)\Rightarrow M\left(\dfrac{7}{3};0\right)\)

c.

Do M thuộc Ox nên tọa độ có dạng: \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(2-m;3\right)\\\overrightarrow{MB}=\left(-1-m;-1\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{u}=\left(3m+6;7\right)\)

\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\left(3m+6\right)^2+7^2}\ge\sqrt{0+7^2}=7\)

Dấu "=" xảy ra khi \(3m+6=0\Rightarrow m=-2\)

\(\Rightarrow M\left(-2;0\right)\)