Gọi G là trọng tâm tam giác ABC .Đặt \(\overrightarrow{GA}=\overrightarrow{a}\) , \(\overrightarrow{GB}=\overrightarrow{b}\) hãy tìm m,n để có \(\overrightarrow{BC}=m\overrightarrow{.a}+n.\overrightarrow{b}\)
Cho tam giác đều ABC có cạnh bằng a, gọi G là trọng tâm. Tính T: \(\overrightarrow{GA}.\overrightarrow{BC}+\overrightarrow{GB}.\overrightarrow{CA}+\overrightarrow{GC}.\overrightarrow{AB}\)
\(T=\overrightarrow{GA}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)+\overrightarrow{GB}.\overrightarrow{CA}+\overrightarrow{GC}.\overrightarrow{AB}\)
\(=\overrightarrow{AB}\left(\overrightarrow{GC}-\overrightarrow{GA}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}-\overrightarrow{GB}\right)\)
\(=\overrightarrow{AB}\left(\overrightarrow{GC}+\overrightarrow{AG}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}+\overrightarrow{BG}\right)\)
\(=\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{AC}.\overrightarrow{BA}\)
\(=0\)
Cho tam giác ABC trọng tâm G, đặt \(\overrightarrow{GA}=\overrightarrow{a};\overrightarrow{GB}=\overrightarrow{b}\), biểu diễn \(\overrightarrow{GC}=m\overrightarrow{a}+m\overrightarrow{b}\). Tổng m + n =...
Theo tính chất trọng tâm ta luôn có:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GC}=-\overrightarrow{GA}-\overrightarrow{GB}=-\overrightarrow{a}-\overrightarrow{b}\)
\(\Rightarrow m=n=-1\Rightarrow m+n=-2\)
Gọi G là trọng tâm tam giác ABC. Đặt \(\overrightarrow{a}=\overrightarrow{GA},\overrightarrow{b}=\overrightarrow{GB.}\)Hãy biểu thị mỗi vecto \(\overrightarrow{AB},\overrightarrow{GC},\overrightarrow{BC},\overrightarrow{CA}\) qua các vecto \(\overrightarrow{a},\overrightarrow{b}\)
\(\overrightarrow{AB}=\overrightarrow{AG}+\overrightarrow{GB}=\overrightarrow{b}-\overrightarrow{a}\)
\(\overrightarrow{GC}=0-\overrightarrow{GA}-\overrightarrow{GB}=-\overrightarrow{a}-\overrightarrow{b}\)
\(\overrightarrow{BC}=\overrightarrow{BG}+\overrightarrow{GC}=-\overrightarrow{b}-\overrightarrow{a}-\overrightarrow{b}=-\overrightarrow{a}-2\overrightarrow{b}\)
\(\overrightarrow{CA}=\overrightarrow{CG}+\overrightarrow{GA}=\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{a}=2\overrightarrow{a}+\overrightarrow{b}\)
Cho tam giác ABC có trọng tâm G, đặt \(\overrightarrow{a}=\overrightarrow{GA},\overrightarrow{b}=\overrightarrow{GB}\). Khi đó \(\frac{1}{2}\overrightarrow{AB}-\overrightarrow{BC}=...\)
Lời giải:
$G$ là trọng tâm tam giác $ABC$ thì ta có 1 bổ đề quen thuộc là:
$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$
$\Leftrightarrow \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{GC}=\overrightarrow{0}$
$\Rightarrow \overrightarrow{GC}=-(\overrightarrow{a}+\overrightarrow{b})$
Ta có:
\(\frac{1}{2}\overrightarrow{AB}-\overrightarrow{BC}=\frac{1}{2}(\overrightarrow{AG}+\overrightarrow{GB})-(\overrightarrow{BG}+\overrightarrow{GC})\)
\(=\frac{1}{2}(-\overrightarrow{a}+\overrightarrow{b})-[-\overrightarrow{b}-(\overrightarrow{a}+\overrightarrow{b})]\)
\(=\frac{\overrightarrow{a}}{2}+\frac{5\overrightarrow{b}}{2}\)
Gọi G là trọng tâm tam giác ABC. Đặt \(\overrightarrow{GA}\)=\(\overrightarrow{a}\), \(\overrightarrow{GB}\)=\(\overrightarrow{b}\). Hãy tìm m, n để có \(\overrightarrow{BC}\)=m\(\overrightarrow{a}\)+n\(\overrightarrow{b}\)
A. m=1, n=2
B. m=-1, n=-2
C. m=2, n=1
D. m=-2, n=-1
Gọi G là trọng tâm tam giác ABC.Đặt \(\overrightarrow{GA}=\overrightarrow{a},\overrightarrow{GB}=\overrightarrow{b}\).Hãy tìm m,n để có \(\overrightarrow{BC}=m\overrightarrow{a}+n\overrightarrow{b}\)
A.m=1,n=2
B.m=-1,n=-2
C.m=2,n=1
D.m=-2,n=-1
Cho tam giác ABC có G là trọng tâm. I là trung điểm của đoạn thẳng BC. Đẳng thức nào sau đúng ?
a) \(\overrightarrow{GA}=2\overrightarrow{GI}\)
b) \(\overrightarrow{IG}=-\dfrac{1}{3}\overrightarrow{IA}\)
c) \(\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{GI}\)
d) \(\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GA}\)
cho tam giác ABC có trọng tâm là G và M là trung điểm BC. Khẳng định nào sau đây là sai
A. \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
B. \(\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AG}\)
C. \(\overrightarrow{GA}=\overrightarrow{BG}+\overrightarrow{GC}\)
D.\(\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GM}\)
giúp mk giải câu C , D thôi cx đc tại cô mk bảo phải cm từng câu cho nên m.n giúp mk vs
c) \(\overrightarrow{BG}+\overrightarrow{GC}=\overrightarrow{BC}\ne\overrightarrow{GA}\)
d) \(\overrightarrow{GB}+\overrightarrow{GC}=\dfrac{1}{2}\overrightarrow{GM}\ne\overrightarrow{GM}\)
Cho tam giác ABC có G là trọng tâm. CMR: Nếu tam giác ABC thỏa mãn \(\left|\overrightarrow{BC}\right|\overrightarrow{GA}+\left|\overrightarrow{CA}\right|\overrightarrow{GB}+\left|\overrightarrow{AB}\right|\overrightarrow{GC}=\overrightarrow{0}\)
Đề thiếu. Bạn xem lại đề.