Đề thiếu. Bạn xem lại đề.
Đề thiếu. Bạn xem lại đề.
Cho tam giác ABC với trọng tâm G. Chứng minh rằng nếu\(\left|\overrightarrow{BC}\right|\overrightarrow{GA}+\left|\overrightarrow{CA}\right|\overrightarrow{GB}+\left|\overrightarrow{AB}\right|\overrightarrow{GC}=\overrightarrow{0}\) thì tam giác ABC là tam giác đều
Cho tam giác ABC. CMR G là trọng tâm tam giác ABC ta có:
\(\overrightarrow{GA}\cdot\overrightarrow{GB}+\overrightarrow{GB}\cdot\overrightarrow{GC}+\overrightarrow{GC}\cdot\overrightarrow{GA}=\frac{1}{6}\left(AB^2+BC^2+CA^2\right)\)
Cho tam giác ABC đều cạnh a, có G là trọng tâm. Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|,\left|\overrightarrow{AB}+\overrightarrow{CB}\right|,\left|\overrightarrow{GB}+\overrightarrow{GC}\right|,\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
MÌNH CẦN GẤP GIÚP MÌNH NHA
Cho tam giác ABC. Tìm Tập hợp các điểm M sao cho \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+\overrightarrow{2MB}+\overrightarrow{3MC}\right|\)
cho tam giác ABC vuông tại A, biết AB=3a, AC=4a. Tập hợp các điểm M thỏa mãn
a) \(\left|3\overrightarrow{MA}-\overrightarrow{MC}\right|=\left|\overrightarrow{BC}-2\overrightarrow{AB}\right|\)
b) \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{BA}-2\overrightarrow{AC}\right|\)
Cho tam giác ABC vuông tại A có \(\widehat{B}\)=60độ, BC=2cm. Tính \(\left|\overrightarrow{AB}\right|,\left|\overrightarrow{AC}\right|,\left|\overrightarrow{AB}+\overrightarrow{AC}\right|,\left|\overrightarrow{AB}-\overrightarrow{AC}\right|?\)
Cho tam giác ABC . Chứng minh rằng nếu \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CA}-\overrightarrow{CB}\right|\) thì ΔABC vuông tại C
cho tam giác ABC. Tìm tập hợp điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\)
cho tam giác ABC. Tìm tập hợp diểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|\)