Cho hình bình hành ABCD. Chứng minh rằng: + + = 2.
Cho hình bình hành ABCD. Chứng minh rằng: + + = 2.
+ + = + +
ABCD là hình bình hành nên
+ = (quy tắc hình bình hành của tổng)
=> + + = + =2
Cho AK và BM là hai trung tuyến của tam giác ABC. Hãy phân tích các vectơ , , theo hai vectơ sau = , =
Gọi G là giao điểm của AK, BM thì G là trọng tâm của tam giác.
Ta có = => =
= – = – = –
Theo quy tắc 3 điểm đối với tổng vec tơ:
= + => = – = (– ).
AK là trung tuyến thuộc cạnh BC nên
+ = 2 => – += 2
Từ đây ta có = + => = – – .
BM là trung tuyến thuộc đỉnh B nên
+ = 2 => – + = 2
=> = + .
Trên đường thẳng chứa cạnh BC của tam giác ABC lấy một điểm M sao cho = 3. Hãy phân tích vectơ theo hai vectơ = , = .
Trước hết ta có
= 3 => = 3 ( +)
=> = 3 + 3
=> – = 3
=> =
mà = – nên = (– )
Theo quy tắc 3 điểm, ta có
= + => = + –
=> = – + hay = – +
Gọi AM là trung tuyến của tam giác ABC và D là trung điểm của đạn AM. Chứng minh rằng:
a) 2 + + = ;
b) 2++ = 4, với O là điểm tùy ý.
a) Gọi M là trung điểm của BC nên:
2 = +
và là hai vec tơ đối nhau nên:
2= – 2
=> 2 +2 = mà 2 = +
Vậy 2 + + = (*)
Gọi M và N lần lượt là trung điểm các cạnh AB và CD của tứ giác ABCD. Chứng minh rằng:
2= + = + .
N là trung điểm của CD:
2= + (1)
Theo quy tắc 3 điểm, ta có:
= + (2)
= + (3)
Từ (1), (2), (3) ta có: 2= +++
vì M là trung điểm của Ab nên: + =
Suy ra : 2 = +
Chứng minh tương tự, ta có 2 = +
Chú ý: Sau khi chứng minh 2 C = + ta chỉ cần chứng minh thêm + = + cũng được
Ta có: + = +++
= +++= ++
Vì = nên ta có: +=+
và 2= + = +
Cho hai điểm phân biệt A và B. Tìm điểm K sao cho
3 + 2 = .
Ta có: 3 + 2 = => 3 = -2 => = –
Đẳng thức này chứng tỏ hi vec tơ , là hai vec tơ ngược hướng, do đó K thuộc đoạn AB
Ta lại có: = – => KA = KB
Vậy K là điểm chia trong đoạn thẳng AB theo tỉ số
Cho tam giác ABC. Tìm điểm m sao cho ++2 =
Gọi D là trung điểm của cạnh AB, ta có:
+ = 2
Đẳng thức đã cho trở thành:
2+ 2 =
=> + =
Đẳng thức này chứng tỏ M là trung điểm của CD
Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.
Ta có : =
=
=
=> ++ = (++) = =
=> ++ = (1)
Gọi G là trong tâm của tam giác MPR, ta có:
+ + = (2)
Mặt khác : = +
= +
= +
=> ++ =(++)+ ++ (3)
Từ (1),(2), (3) suy ra: ++ =
Vậy G là trọng tâm của tam giác NQS
Cho tam giác đều ABC có trọng tâm O và M là một điểm tùy ý trong tam giác. Gọi D,E,F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng: ++ =
Qua M kẻ các đường thẳng song song với các cạnh của tam giác
A1B1 // AB; A2C2 // AC; B2C1 // BC.
Dễ thấy các tam giác MB1C2; MA1C1;MA2B2 đều là các tam giác đều. Ta lại có MD B1C2 nên MD cũng là trung điểm thuộc cạnh B1C2 của tam giác MB1C2
Ta có 2 = +
Tương tự: 2 = +
2 = +
=> 2( ++) = (+) + ( + ) + (+)
Tứ giác là hình bình hành nên
+ =
Tương tự: + =
+ =
=> 2( ++) = ++
vì O là trọng tâm bất kì của tam giác và M là một điểm bất kì nên
++ = 3.
Cuối cùng ta có:
2( ++) = 3;
=> ++ =
Cho \(\Delta ABC\) đều có O là trọng tâm và 1 điểm M tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. CMR : \(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}=\frac{3}{2}\overrightarrow{MO}\).