Gọi G là trọng tâm tam giác ABC. Đặt \(\overrightarrow{a}=\overrightarrow{GA},\overrightarrow{b}=\overrightarrow{GB.}\)Hãy biểu thị mỗi vecto \(\overrightarrow{AB},\overrightarrow{GC},\overrightarrow{BC},\overrightarrow{CA}\) qua các vecto \(\overrightarrow{a},\overrightarrow{b}\)
Gọi G là trọng tâm tam giác ABC. Đặt \(\overrightarrow{GA}\)=\(\overrightarrow{a}\), \(\overrightarrow{GB}\)=\(\overrightarrow{b}\). Hãy tìm m, n để có \(\overrightarrow{BC}\)=m\(\overrightarrow{a}\)+n\(\overrightarrow{b}\)
A. m=1, n=2
B. m=-1, n=-2
C. m=2, n=1
D. m=-2, n=-1
Cho tam giác ABC có AB=2,BC=4,CA=3. Tính \(\overrightarrow{GA}.\overrightarrow{GB}+\overrightarrow{GB}.\overrightarrow{GC}+\overrightarrow{GC}.\overrightarrow{GA}\)
Tam giác ABC, trọng tâm G. M, N là trung điểm AB, BC. I, J sao cho \(2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0}\) và \(\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
a) M, N, J thẳng hàng
b) J là trung điểm BI
Cho tam giác ABC có G là trọng tâm. Lấy I,Jsao cho:\(2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0},2\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
a) M,N là trung diêm AB,BC. CM: M,N,J thẳng hàng
Cho \(\Delta ABC\) điểm M thỏa mãn : \(\overrightarrow{MB}=-\overrightarrow{2MC}\)
a, G là trọng tâm tam giác ABC , H đối xứng với B qua G
CM: \(\overrightarrow{AH}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)
\(\overrightarrow{CH}=\frac{-1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
b. N là trung điểm của BC . CM \(\overrightarrow{NH}=\frac{1}{6}\overrightarrow{AC}-\frac{5}{6}\overrightarrow{AB}\)
Cho tam giác ABC có trọng tâm G. Gọi I,J là các điểm thoã mãn: \(\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\), \(\overrightarrow{JA}\)+\(\overrightarrow{JB}-3\overrightarrow{JC}=\overrightarrow{0}\)
a)xác dịnh các điểm I,J
b)CM: I,B,G thẳng hàng
c) CM: IJ song song AC
Cho tam giác ABC.Gọi I là điểm đối xứng của trọng tâm G qua B.
a, Chứng minh \(\overrightarrow{IA}-5\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)
b, Đặt \(\overrightarrow{AG}=\overrightarrow{a},\overrightarrow{AI}=\overrightarrow{b}\) .Tính \(\overrightarrow{AB};\overrightarrow{AC}\) theo \(\overrightarrow{a},\overrightarrow{b}\)
Cho tam giác ABC có G là trọng tâm, I là trug điểm AB, M thuộc cạnh AB sao cho \(\overrightarrow{MA}+3\overrightarrow{MB}=0\).
a, CMR; \(\overrightarrow{MC}+2\overrightarrow{MI}=3\overrightarrow{MG}\)
b, Giả sử điểm N t/m: \(\overrightarrow{AN}=x\overrightarrow{AC}\). Tìm x để M,N,G thẳng hàng