Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Duyên
Xem chi tiết
tran ha my
5 tháng 11 2017 lúc 15:17

GTNN là gì z.tui ko  hiểu nên ko giải được!

GTNN là giá trị nhỏ nhất

Neymar jr
6 tháng 4 2018 lúc 19:38

giá trị nhỏ nhất

Phạm Khánh Huyền
Xem chi tiết
Lan Trịnh Thị
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 10 2019 lúc 11:03

Vấn đề duy nhất của bài này là đánh giá cụm \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\)

Trước hết, ta chứng minh bổ đề sau:

Với hai dãy số dương \(x\ge y\ge z\)\(a\ge b\ge c\) ta luôn có: \(ax+by+cz\ge bx+cy+az\)

\(\Leftrightarrow\left(a-b\right)x+\left(b-c\right)y+\left(c-a\right)z\ge0\)

\(\Leftrightarrow\left(a-b\right)x-\left(a-b\right)y+\left(a-c\right)y-\left(a-c\right)z\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(x-y\right)+\left(a-c\right)\left(y-z\right)\ge0\) (luôn đúng)

Không mất tính tổng quát, giả sử \(x\ge y\ge z\Rightarrow\left\{{}\begin{matrix}x^3\ge y^3\ge z^3\\\frac{1}{y^2+z^2}\ge\frac{1}{z^2+x^2}\ge\frac{1}{x^2+y^2}\end{matrix}\right.\)

Áp dụng bổ đề ta có:

\(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{y^3}{y^2+z^2}+\frac{z^3}{z^3+x^2}+\frac{x^3}{x^2+y^2}\)

Mặt khác: \(\frac{x^3}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{1}{2}y\)

Tương tự và cộng lại: \(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{x^2+z^2}\ge\frac{1}{2}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{1}{3}\left(x+y+z\right)^2+\frac{1}{2}\left(x+y+z\right)-\frac{7}{6}\left(x+y+z\right)\)

\(P\ge\frac{1}{3}\left(x+y+z\right)^2-\frac{2}{3}\left(x+y+z\right)+\frac{1}{3}-\frac{1}{3}\)

\(P\ge\frac{1}{3}\left(x+y+z-1\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)

\(P_{min}=-\frac{1}{3}\) khi \(x=y=z=\frac{1}{3}\)

Khách vãng lai đã xóa
Lan Trịnh Thị
3 tháng 10 2019 lúc 14:53

@Nguyễn Việt Lâm Anh ơi giúp em nốt bài với ạ !!!

Khách vãng lai đã xóa
Lan Trịnh Thị
3 tháng 10 2019 lúc 14:53
Khách vãng lai đã xóa
roronoa zoro
Xem chi tiết
tth_new
15 tháng 12 2019 lúc 18:27

Chứng minh cái BĐT phụ này là xong: \(\frac{x}{3-x}\ge\frac{3}{4}x-\frac{1}{4}\) (0 < x < 3)

\(\Leftrightarrow\frac{3\left(x-1\right)^2}{4\left(3-x\right)}\ge0\) (luôn đúng với 0 < x < 3)

Làm nốt.

Khách vãng lai đã xóa
☆Nu◈Pa◈Kachi
Xem chi tiết
shitbo
10 tháng 6 2019 lúc 10:50

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=1.\)

Dấu "=" xảy ra khi:

\(x=y=z=\frac{2}{3}\)

Thanh Tùng DZ
10 tháng 6 2019 lúc 10:50

Áp dụng BĐT Cô-si cho 2 số dương \(\frac{x^2}{y+z}\)và \(\frac{y+z}{4}\), ta được :

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\)  ( 1 )

Tương tự : \(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\)                                       ( 2 )

                \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)                                          ( 3 )

Cộng ( 1 ) , ( 2 ) và ( 3 ) , ta được :

\(\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\)

\(P\ge\left(x+y+z\right)-\frac{x+y+z}{2}=1\) 

Dấu " = " xảy ra \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)

Vậy GTNN của P là 1 \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)

\(\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{x+z}+\frac{z\left(x+y+z\right)}{x+y}\)

\(\Rightarrow P+\left(x+y+z\right)=\left(x+y+z\right)\left(\frac{x}{x+y}+\frac{y}{x+z}+\frac{z}{x+y}\right)\)hay \(P+2=2\cdot\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\).Mặt khác \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zx+zy}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\frac{3}{2}\)

Do đó \(P+2\ge2\cdot\frac{3}{2}=3\Rightarrow P\ge1\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}\frac{x}{xy+xz}=\frac{y}{yx+yz}=\frac{z}{zx+zy}\\x=y=z\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{y+z}=\frac{1}{x+z}=\frac{1}{x+y}\\x=y=z\end{cases}\Leftrightarrow}x=y=z=\frac{2}{3}}\)

Khách vãng lai đã xóa
Nguyễn Thái Sơn
Xem chi tiết
Nguyễn Linh Chi
19 tháng 5 2020 lúc 9:09

Đặt:P =  \(\frac{4-x}{x-2}=\frac{2+2-x}{x-2}=\frac{2}{x-2}-1\)

Ta có: P đạt giá trị lớn nhất khi và chỉ khi \(\frac{2}{x-2}\) đạt giá trị lớn nhất 

+) Nếu :  x - 2 < 0 => \(\frac{2}{x-2}< 0\)

+) Nếu x - 2> 0 => \(\frac{2}{x-2}>0\)

Nên \(\frac{2}{x-2}\)đạt giá trị lớn nhất khi x - 2 > 0  và x - 2 đạt giá trị bé nhất 

=> x - 2 = 1 hay x = 3  ( thỏa mãn x khác 2)

Tại x = 3 ta có: P = 2 - 1 = 1 

Vậy giá trị lớn nhất của biểu thức là P = 1 tại x = 3.

Khách vãng lai đã xóa
Nguyễn Thái Sơn
19 tháng 5 2020 lúc 11:41

cô ơi đề bảo tìm gtnn cô ạ :(

Khách vãng lai đã xóa
Dương Chí Thắng
Xem chi tiết
tth_new
8 tháng 5 2019 lúc 8:57

Anh xét hiệu P - 3/2 rồi làm như cách của em: Câu hỏi của Namek kian - Toán lớp 9 ạ ! Từ đó suy ra P >= 3/2. Hoặc có thể làm thẳng luôn như 4 bạn kia.

Con Chim 7 Màu
8 tháng 5 2019 lúc 9:38

\(P=\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1-3\)

\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}-3\)

\(=\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)-3\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\ge\frac{9}{2\left(x+y+z\right)}\)

\(\Leftrightarrow P\ge\left(x+y+z\right).\frac{9}{2\left(x+y+z\right)}-3=\frac{3}{2}\left(đpcm\right)\)

Dấu '=' xảy ra khi \(x=y=z\)

:))

Dương Chí Thắng
8 tháng 5 2019 lúc 11:24

tth giai thich cho anh tai sao cai cuoi lai lon hon hoac bang 0 di

Hồ Quốc Khánh
Xem chi tiết
Nguyễn Ngọc Quý
22 tháng 3 2016 lúc 19:53

GTNN là 1 bạn ak

Phương Anh Đặng Đỗ
22 tháng 3 2016 lúc 20:12

1 nha tui ko chắc chắn đâu

tui mới lớp 5 mà

Tran Dinh Chuyen
29 tháng 3 2016 lúc 19:52

ap dung BDT Bunhiacopxki ta co: ( a+b+c).(X^2/a+Y^2/b+Z^2/c) >= (X+Y+Z)^2 => X^2/a+Y^2/b+Z^2/c >= (X+Y+Z)^2/(a+b+c) (*)                   ap dung BDT (*) ta co: A= x^2/(x+y)+y^2/(y+z)+z^2/(z+x) >= (x+y+z)^2/2(x+y+z) = (x+y+z)/2                                                                     mat #: ap dung BDT Co Si ta co: x+y >= 2can(xy) c/m tuong tu => x+y+z >= can(xy)+can(yz)+can(zx) = 2 => A >= 2/2 = 1

Nguyễn Thị Nguyệt Ánh
Xem chi tiết
Akai Haruma
29 tháng 5 2020 lúc 0:08

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+y+z)\geq (1+1+1)^2\)

\(\Leftrightarrow A.1\geq 9\Leftrightarrow A\geq 9\)

Vậy GTNN của $A$ là $9$. Giá trị này đạt được tại $x=y=z=\frac{1}{3}$

Akai Haruma
29 tháng 5 2020 lúc 0:08

Bài 2:

Hoàn toàn tương tự bài 1

$S(a+b+c)\geq (1+1+1)^2$ theo BĐT Bunhiacopxky

$\Leftrightarrow S.3\geq 9\Rightarrow S\geq 3$

Vậy GTNN của $S$ là $3$ khi $a=b=c=1$

Akai Haruma
29 tháng 5 2020 lúc 0:11

Bài 3:

Áp dụng BĐT Bunhiacopxky như các bài trên ta có:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$

Mà $0< x+y+z\leq 6$ nên $\frac{9}{x+y+z}\geq \frac{9}{6}=\frac{3}{2}$

Do đó $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=z=2$

Bài 4:

Áp dụng BĐT Cô-si cho các số dương ta có:

$a^4+b^4+c^4+d^4\geq 4\sqrt[4]{a^4b^4c^4d^4}=4abcd$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=d>0$