Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Văn Chiến
Xem chi tiết
Phạm Minh Đức
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 12 2021 lúc 7:05

\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)

Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)

Do đó \(x\in\left\{1;2\right\}\)

Nguyễn Hoàng Minh
10 tháng 12 2021 lúc 7:07

\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)

Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)

Vậy PT có nghiệm \(x=4\)

Mavis Dracula
Xem chi tiết
ღ๖ۣۜLinh
23 tháng 10 2019 lúc 21:39

ĐK \(x\ge-4\)

\(BPT\Leftrightarrow\hept{\begin{cases}2x-3\ge0\\x\ge-4\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\ge-4\end{cases}}\)

\(\Rightarrow x\ge\frac{3}{2}\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
23 tháng 10 2019 lúc 23:06

ĐK: \(x+4\ge0\) <=> \(x\ge-4\)

Bpt <=> \(\orbr{\begin{cases}x+4=0\\2x-3=0\end{cases}}\) hoặc \(2x-3>0\) <=> \(\orbr{\begin{cases}x=-4\\x=\frac{3}{2}\end{cases}}\)hoặc \(x>\frac{3}{2}\)

<=> \(\orbr{\begin{cases}x=-4\\x\ge\frac{3}{2}\end{cases}}\)Thỏa mãn đk.

Vậy 

\(\orbr{\begin{cases}x=-4\\x\ge\frac{3}{2}\end{cases}}\)

Khách vãng lai đã xóa
Bùi Anh Tuấn
Xem chi tiết
Nguyễn Đức Trí
16 tháng 8 2023 lúc 21:55

\(\dfrac{1}{5}\sqrt[]{25x+50}-5\sqrt[]{x+2}+\sqrt[]{9x+18}+9=0\)

\(\Leftrightarrow\dfrac{1}{5}\sqrt[]{25\left(x+2\right)}-5\sqrt[]{x+2}+\sqrt[]{9\left(x+2\right)}+9=0\)

\(\Leftrightarrow\dfrac{1}{5}.5\sqrt[]{x+2}-5\sqrt[]{x+2}+3\sqrt[]{x+2}+9=0\)

\(\Leftrightarrow\sqrt[]{x+2}-5\sqrt[]{x+2}+3\sqrt[]{x+2}+9=0\)

\(\Leftrightarrow\sqrt[]{x+2}\left(1-5+3\right)+9=0\)

\(\Leftrightarrow-\sqrt[]{x+2}+9=0\)

\(\Leftrightarrow\sqrt[]{x+2}=9\)

\(\Leftrightarrow x+2=81\)

\(\Leftrightarrow x=79\)

Pham Quang Huy
Xem chi tiết
alibaba nguyễn
10 tháng 12 2019 lúc 13:31

\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)

\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)

Khách vãng lai đã xóa
alibaba nguyễn
10 tháng 12 2019 lúc 13:39

\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)

\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)

\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)

\(\Leftrightarrow2\sqrt{x-8}+16=x\)

\(\Leftrightarrow x=24\)

Khách vãng lai đã xóa
hằng hồ thị hằng
Xem chi tiết
Akai Haruma
29 tháng 5 2021 lúc 23:01

Bài 1:

Vì $a\geq 1$ nên:

\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)

\(\geq 1+\sqrt{4}+0=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=1$

 

Akai Haruma
29 tháng 5 2021 lúc 23:04

Bài 2:
ĐKXĐ: x\geq -3$

Xét hàm:

\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)

\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)

Do đó $f(x)$ đồng biến trên TXĐ

\(\Rightarrow f(x)=0\) có nghiệm duy nhất

Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.

Cung Đường Vàng Nắng
Xem chi tiết
Đặng Minh Triều
18 tháng 6 2016 lúc 22:02

cái j zị

Nguyễn Thị Anh
18 tháng 6 2016 lúc 22:03

đề bị sao r đó

Lightning Farron
18 tháng 6 2016 lúc 22:08

theo kinh nghiệm lâu năm của tui thì đề là;

\(\sqrt{x-2}-\sqrt{x+1}+\sqrt{2x-5}=2x^2-5x\) nhưng sao là hệ nhỉ

Lê Yến Nhi
Xem chi tiết
Phạm Đắc Quyền
Xem chi tiết