T=\(\sqrt{x^2-16}+\sqrt{x^2-36}\) biết \(\sqrt{x^2-16}-\sqrt{x^2-36}=2\)
tính T=\(\sqrt{x^2-16}+\sqrt{x^2-36}biết\sqrt{x^2-16}-\sqrt{x^2-36}=2\)
Ta có: \(\sqrt{x^2-16}-\sqrt{x^2-36}=2\)
\(\Leftrightarrow\left(\sqrt{x^2-16}-\sqrt{x^2-36}\right)\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)
\(\Leftrightarrow\left[\left(\sqrt{x^2-16}\right)^2-\left(\sqrt{x^2-36}\right)^2\right]=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)
\(\Leftrightarrow x^2-16-x^2+36=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)
\(\Leftrightarrow20=2\cdot\left(\sqrt{x^2-16}+\sqrt{x^2-36}\right)\)
\(\Leftrightarrow10=\sqrt{x^2-16}+\sqrt{x^2-36}\)
hay \(T=10\)
Vậy \(T=10\).
a)\(\sqrt{x}\)<3
b)\(\sqrt{4x+16}+\sqrt{x+4}+2\sqrt{9x+36}=35\)
c)\(\sqrt{x+2\sqrt{x-1}}=3\)
tìm x bt
a: Ta có: \(\sqrt{x}< 3\)
nên \(0\le x< 9\)
b: Ta có: \(\sqrt{4x+16}+\sqrt{x+4}+2\sqrt{9x+36}=35\)
\(\Leftrightarrow2\sqrt{x+4}+\sqrt{x+4}+6\sqrt{x+4}=35\)
\(\Leftrightarrow\sqrt{x+4}=\dfrac{35}{9}\)
\(\Leftrightarrow x+4=\dfrac{1225}{81}\)
hay \(x=\dfrac{901}{81}\)
a) \(\sqrt{x}< 3\Rightarrow x< 9\)
b) \(\sqrt{4x+16}+\sqrt{x+4}+2\sqrt{9x+36}=35\)
\(\Rightarrow2\sqrt{x+4}+\sqrt{x+4}+6\sqrt{x+4}=35\)
\(\Rightarrow\sqrt{x+4}=\dfrac{35}{9}\)
\(\Rightarrow x+4=\dfrac{1225}{81}\)
\(\Rightarrow x=\dfrac{901}{81}\)
c) \(\sqrt{x+2\sqrt{x-1}}=3\)
\(\Rightarrow\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}=3\)
\(\Rightarrow\sqrt{\left(x-1+1\right)^2}=3\)
\(\Rightarrow\sqrt{x^2}=3\)
\(\Rightarrow\left|x\right|=3\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
a) \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
b) \(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
c) \(\sqrt{x^2+6x-9}-2\sqrt{x^2-2x+1}+\sqrt{x^2}=0\)
a: =>2*căn x+5+căn x+5-1/3*3*căn x+5=4
=>2*căn(x+5)=4
=>căn (x+5)=2
=>x+5=4
=>x=-1
b: =>\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
=>2*căn x-1=16
=>x-1=64
=>x=65
c, \(\sqrt{\left(x-3\right)^2}-2\sqrt{\left(x-1\right)^2}+\sqrt{x^2}=0\\ \Leftrightarrow\left|x-3\right|-2\left|x-1\right|+\left|x\right|=0\left(1\right)\)
TH1: \(x\ge3\)
\(\left(1\right)\Rightarrow x-3-2x+2+x=0\\ \Leftrightarrow-1=0\left(loại\right)\)
TH2: \(2\le x< 3\)
\(\left(1\right)\Rightarrow3-x-2x+2+x=0\\ \Leftrightarrow-2x=-5\\ \Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)
TH3: \(0\le x< 2\)
\(\left(1\right)\Rightarrow3-x+2x-2+x=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
TH4: \(x< 0\)
\(\left(1\right)\Rightarrow3-x+2x-2-x-=0\\ \Leftrightarrow1=0\left(loại\right)\)
Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{5}{2}\right\}\)
Câu 1 (2 điểm).
a) Tính \(\sqrt{64}+\sqrt{16}-2\sqrt{36}\).
b) Rút gọn biểu thức P=\(\left(\dfrac{1}{\sqrt{x}}-\dfrac{2}{1+\sqrt{x}}\right).\dfrac{x+\sqrt{x}}{1-\sqrt{x}}\), với x>0; x\(\ne1\).
Câu 1 :
a, \(=8+4-2.6=12-12=0\)
b, đk : x > 0 ; x khác 1
\(P=\left(\dfrac{\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right).\dfrac{x+\sqrt{x}}{1-\sqrt{x}}=\dfrac{1-\sqrt{x}}{1-\sqrt{x}}=1\)
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
Tìm x
\(2\sqrt{36x-36}-\dfrac{1}{3}\sqrt{9x-9}-4\sqrt{4x-4}+\sqrt{x-1}=16\)
\(ĐK:x\ge1\\ PT\Leftrightarrow12\sqrt{x-1}-\sqrt{x-1}-8\sqrt{x-1}+\sqrt{x-1}=16\\ \Leftrightarrow4\sqrt{x-1}=16\\ \Leftrightarrow\sqrt{x-1}=4\\ \Leftrightarrow x-1=16\\ \Leftrightarrow x=17\left(tm\right)\)
\(< =>2\sqrt{36\left(x-1\right)}-\dfrac{1}{3}\sqrt{9\left(x-1\right)}-4\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16
\)\(< =>12\sqrt{x-1}-\sqrt{x-1}-8\sqrt{x-1}+\sqrt{x-1}=16\)
\(< =>4\sqrt{x-1}=16\)
\(< =>\sqrt{x-1}=4
\)
\(< =>x-1=16\)
\(< =>x=17\)
* Tìm x, bt:
\(2\sqrt{36x-36}-\dfrac{1}{3}\sqrt{9x-9}-4\sqrt{4x-4}+\sqrt{x-1}=16\)
`2sqrt{36x-36}-1/3sqrt{9x-9}-4sqrt{4x-4}+sqrt{x-1}=16`
`ĐK:x>=1`
`pt<=>2sqrt{36(x-1)}-1/3sqrt{9(x-1)}-4sqrt{4(x-1)}+sqrt{x-1}=16`
`<=>12sqrt{x-1}-sqrt{x-1}-8sqrt{x-1}+sqrt{x-1}=16`
`<=>4sqrt{x-1}=16`
`<=>sqrt{x-1}=4`
`<=>x-1=16`
`<=>x=17(tmđk)`
Vậy `S={17}`
Rút gọn các biểu thức sau:
a) \(\sqrt{\dfrac{16(4x-4\sqrt{x}+1)}{6x+3\sqrt{x}}}\) với \(x > 1\)
b) \(\dfrac{\sqrt{(x)^{2}}+\sqrt{4-4x+(x)^{2}}+1}{2x-1}\) với \(x > 2\sqrt{2}\)
c) \(\sqrt{(x)^{2}-8x+16}+\sqrt{36-12x+(x)^{2}}\) với \(4< x <6\)
b: \(=\dfrac{\left|x\right|+\left|x-2\right|+1}{2x-1}=\dfrac{x+x-2+1}{2x-1}=\dfrac{2x-1}{2x-1}=1\)
c: \(=\left|x-4\right|+\left|x-6\right|\)
=x-4+6-x=2
\(\sqrt{x^2-8x+16}+\sqrt{x^2-12x+36}=-x^2+10x-23\)
Tìm x (có lời giải)
Ta có:\(\hept{\begin{cases}\sqrt{x^2-8x+16}+\sqrt{x^2-12x+36}=|x-4|+|6-x|\ge|x-4+6-x|=2\\-x^2+10x-23=-\left(x^2-10x+23\right)=-\left(x^2-10x+25-2\right)=-\left(x-5\right)^2+2\le2\end{cases}}\)
Dấu " = " xảy ra khi: x = 5.
Vậy x = 5.