Cho a,b,c>1. CM: \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)
Cho a,b,c là các số lớn hơn 1 .Cm \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)
áp dụng bất đẳng thức côsi
\(\frac{a^2}{b-1}+4\left(b-1\right)\ge2\sqrt{\frac{a^2}{b-1}\cdot4\left(b-1\right)}=4a\)
\(\frac{b^2}{c-1}+4\left(c-1\right)\ge4b\)
\(\frac{c^2}{a-1}+4\left(a-1\right)\ge4c\)
cộng vế theo vế
\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}+4\left(a-1\right)+4\left(b-1\right)+4\left(c-1\right)\ge4a+4b+4c\)
\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge4\left(a+b+c\right)-4\left(a+b+c\right)+4\cdot3=12\)(đpcm)
Cách khác:
\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)-3}\)
Đặt \(a+b+c=x>3\)
Ta cần chứng minh
\(\frac{x^2}{x-3}\ge12\)
\(\Leftrightarrow\frac{\left(x-6\right)^2}{x-3}\ge0\)(đúng)
Vậy ta có điều phải chứng minh
Cho a;b;c>1. Cmr: \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)
\(\frac{a^2}{b-1}+4\left(b-1\right)\ge4a\)
tương tụ,,,rồi cộng vô
Cho a,b, c là các số dương thỏa mãn : a + b+ c=1
CM :\(\frac{3}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\ge12\)
cho a;b;c là các số lớn hơn 1.chứng minh \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)
Đặt x=a+b+c(x>3)
Ta có \(\left(x-6\right)^2\ge0\)(dấu '=' xảy ra khi x=6 hay a+b+c=6)\(\Leftrightarrow x^2-12x+36\ge0\Leftrightarrow x^2\ge12x-36\Leftrightarrow x^2\ge12\left(x-3\right)\Leftrightarrow\frac{x^2}{x-3}\ge12\)(1)
Áp dụng bđt \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)(dấu '=' xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\))
Ta có \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}=\frac{x^2}{x-3}\)(2)
Từ (1) và (2)\(\Rightarrow\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)(đpcm)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}\frac{a}{b-1}=\frac{b}{c-1}=\frac{c}{a-1}\\a+b+c=6\end{matrix}\right.\)\(\Leftrightarrow a=b=c=2\)
Cho a, b, c là các số lớn hơn 1. Chứng minh:
\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)
Ta có: \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}\)
Vậy ta chỉ cần chứng minh \(\frac{\left(a+b+c\right)^2}{a+b+c-3}\ge12\) với \(a;b;c>1\)
Thật vậy, do \(a;b;c>1\Rightarrow a+b+c-3>0\) biến đổi tương đương ta có:
\(\Leftrightarrow\left(a+b+c\right)^2\ge12\left(a+b+c-3\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2-12\left(a+b+c\right)+36\ge0\)
\(\Leftrightarrow\left(a+b+c-6\right)^2\ge0\) (luôn đúng)
BĐT được chứng minh, dấu "=" xảy ra khi \(a=b=c=2\)
cho a,b,c>0 thỏa mãn a+b+c=1. cm:
a, \(P=\frac{3}{ab+bc+ca}+\frac{2}{a^2+b^2+c^2}>14\)
b, \(Q=\frac{3}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\ge12\)
giúp tui vớiiii
CHO a;b;c là các số lớn hơn 1.chứng minh \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)
Cho a,b,c là các số lớn hơn 1 chứng minh rằng : \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\) . Ai làm cụ thể cho mình với
với a,b,c là các số lớn hơn 1 . áp dugj bđt Cô-si ta có :
\(\frac{a^2}{b+1}+4\left(b-1\right)>=4a\)
cmtt: => đpcm
CMR : \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)