\(\frac{a^2}{b-1}+4\left(b-1\right)\ge4a\) ; \(\frac{b^2}{c-1}+4\left(c-1\right)\ge4b\); \(\frac{c^2}{a-1}+4\left(a-1\right)\ge4c\)
Cộng vế với vế, chuyển vế và rút gọn ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=2\)
\(\frac{a^2}{b-1}+4\left(b-1\right)\ge4a\) ; \(\frac{b^2}{c-1}+4\left(c-1\right)\ge4b\); \(\frac{c^2}{a-1}+4\left(a-1\right)\ge4c\)
Cộng vế với vế, chuyển vế và rút gọn ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=2\)
cho a,b,c là các số thực không âm thỏa mãn ab+bc+ca>0. Chứng minh rằng
\(\frac{1}{2a^2+bc}+\frac{1}{2b^2+ca}+\frac{1}{2c^2+ab}+\frac{1}{ab+bc+ca}\ge\frac{12}{\left(a+b+c\right)^2}\)
1/trong không gian với hệ tọa độ oxyz, cho tọa độ các điểm A(1;2;3),B(2;-1;0),C(0;1;-1). Diện tích tam giác ABC là
A/\(\frac{\sqrt{166}}{2}\) B/\(\frac{\sqrt{156}}{2}\) C\(\frac{\sqrt{146}}{2}\) D \(\frac{\sqrt{146}}{3}\)
2.trong khong gian oxyz, cho điểm A(4;-3;2) và đường thẳng (d)\(^{\frac{x+2}{3}}=\frac{y+2}{2}=\frac{z}{-1}\). Tọa độ hình chiểu vuông góc của A lên đường thẳng d là
A H(1;0;-1) B(-1;0;-1) C H(0;1;-1) D H(-1;0;1)
3 Nguyên hàm F(X) của hàm số f(x)=3x^5(2-3x), biết F(-1)=1 là
1) Trong không gian Oxyz, cho các điểm M(2;1;4),N(5;0;0),P(1;-3;1). Gọi I(a,b,c) là tâm của mặt cầu tiếp xúc với mặt phẳng (Oyz) đồng thời đi qua các điểm M,N,P. Tìm c biết a+b+c<5
2) Trong không gian Oxyz, cho đường thẳng d :\(\frac{x+1}{2}\)= \(\frac{y}{1}\)=\(\frac{z-2}{-1}\) và 2 điểm A(-1;3;1), B(0;2;-1). Gọi C(m,n,p) là điểm thuộc d sao cho diện tích tam giác ABC bằng \(2\sqrt{2}\). Giá trị của tổng m+n+p bằng ??
3) Trong không gian Oxyz, cho ba đường thẳng d :\(\frac{x}{1}\)=\(\frac{y}{1}\)=\(\frac{z+1}{-2}\); \(\Delta_1\): \(\frac{x-3}{2}\)=\(\frac{y}{1}\)=\(\frac{z-1}{1}\) và \(\Delta_2\): \(\frac{x-1}{1}\)=\(\frac{y-2}{2}\)=\(\frac{z}{1}\). Đường thẳng \(\Delta\) vuông góc với d đồng thời cắt \(\Delta_1\), \(\Delta_2\) tương ứng tại H, K sao cho độ dài HK nhỏ nhất. Biết rằng \(\Delta\) có một vecto chỉ phương là \(\overrightarrow{u}\)=(h;k;1). Giá trị của h-k bằng
1 biết \(\int\) \(\frac{1}{1+cosx}dx=a.tan\frac{x}{b}+C\) với a,b là các số nguyên. Tính T=a+b
2 biết \(\int_1^5\) f(x) dx=3. Tính D =\(\int_1^5\) [f(x)+2]dx là
3 biết \(\int_0^{\frac{\pi}{2}}e^{sinx}.cosxdx=a.e+b\) , với a,b là các số nguyên a+b bằng??
4 tính diện tích S của hình phẳng giới hạn bởi các đường y=x^4-2x^2+1 và trục hoành là
5 một ô tô đang chạy với vận tốc 36km/h thì tăng tốc chuyển động nhanh dần với gia tốc a(t)=\(1+\frac{t}{3}\)
(m/s^2). tính quãng đường ô tô đi được sau 6 giay kể từ khi ô tô bắt đầu tăng tốc
6 cho số phức z thỏa /z-1/=/(1+i)z/ . Tập hợp biểu diễn số phức z là một đường tròn có tâm và bán kính lần lượt là
7 trong mặt phẳng oxy, cho các điểm A(4;0),B(1;-1).Gọi G là trọng tâm của tam giác ABC .Biết rằng G là điểm biểu diễn số phức z mệnh đề nào dưới đây đúng
A z=\(3+\frac{3}{2}i\) B z=2-i C z=2+i D z=\(3-\frac{3}{2}i\)
8 viết pt mặt cầu S có tâm I(1;-2;5) và tiếp xúc với mp P:x-2y-2z-4=0
9 trong ko gian oxyz, viết pt mặt cầu qua bốn điểm O, A(1;0;0);,B(0;-2;0) ,C(0;0;4)
10 trong ko gian oxyz, cho hai điểm A(1;2;-1) vÀ B(-3;0;-1) . mặt phẳng trung trực của đoạn thằng AB có phương trình là
11 rong ko gian oxyz, đường thẳng d\(\left\{{}\begin{matrix}x=t\\y=1-t\\z=2+t\end{matrix}\right.\) đi qua điểm nào sau đây
A F(0;1;2) B K(1;-1;1) C E(1;1;2) D H(1;2;0)
12 trong ko gian oxyz, cho đường thẳng \(\Delta\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=13-t\end{matrix}\right.\) (t\(\in\)R) . Đường thảng d đi qua A(0;1;-1) cắt và vuông góc với đường thẳng \(\Delta\) .viết phương trình của đường thẳng d
13 trong ko gian oxyz cho điểm A(0;1;-2) . Tọa độ điểm H là hình chiếu vuông góc cũa điểm A trên mp (P):-x-2y+2z-3=0 là
14 trong ko gian với hệ tọa độ oxyz, cho điểm A(2;3;-1) và đường thẳng d \(\frac{x-4}{1}=\frac{y-1}{-2}=\frac{z-5}{2}\) tọa độ điểm \(A^'\) (A phẩy ) là điểm đối xứng của điểm A qua đường thẳng d là
15 trong ko gian oxyz cho điểm A(4;-3;2).tỌA độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng d \(\frac{x+2}{3}=\frac{y+2}{2}\frac{z}{-1}\) là
1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\)
A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1)
2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\)
A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5)
3 tập nghiệm của bất pt \(\left(\sqrt{6}-\sqrt{5}\right)^{x-1}\ge\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\) là
4 tập nghiệm của bất pt \(\left(\frac{1}{3}\right)^{\sqrt{x+2}}>3^{-x}\) là
A (2;+\(\infty\)) B (1;2) C (1;2] D [2;\(+\infty\) )
5 Giai bất pt \(\left(\frac{3}{4}\right)^{2x-1}\le\left(\frac{4}{3}\right)^{-2x+x}\)
A X\(\ge\)1 B X<1 C X\(\le\) 1 D x>1
6 bất pt \(log_4\left(x+7\right)>log_2\left(x+1\right)\) có tập nghiệm là
A (5;\(+\infty\) ) B (-1;2) C (2;4) D (-3;2)
7 Tìm số nghiệm nguyên dương của bất pt \(\left(\frac{1}{5}\right)^{x^2-2x}\ge\frac{1}{125}\)
8 f(x)=\(x.e^{-3x}\) . tập nghiệm của bất pt \(f^,\) (x)>0
A (0;1/3) B (0;1) C \(\left(\frac{1}{3};+\infty\right)\) D \(\left(-\infty;\frac{1}{3}\right)\)
9 biết S =[a,b] là tập nghiệm của bất pt \(3.9^x-10.3^x+3\le0\) . Tìm T=b-a
10 TẬP nghiệm của bất pt \(log_{\frac{1}{3}}\frac{1-2x}{x}>0\) là
11 có bao nhiêu nghiệm âm lớn hơn -2021 của bất pt \(\left(2-\sqrt{3}\right)^x>\left(2+\sqrt{3}\right)^{x+2}\) là
A 2019 B 2020 C 2021 D 2018
12 Biết tập nghiệm S của bất pt \(log_{\frac{\pi}{6}}\left[log_3\left(x-2\right)\right]>0\) là khoảng (a,b) . Tính b-a
13 tập nghiệm của bất pt \(16^x-5.4^x+4\ge0\)là
14 nếu \(log_ab=p\) hì \(log_aa^2.b^4\)bằng
A 4p+2 B 4p+2a c \(a^2+p^4\) D \(p^4+2a\)
15 cho a,b là số thực dương khác 1 thỏa \(log_{a^2}b+log_{b^2}a=1\) mệnh đề nào đúng
A a=\(\frac{1}{b}\) B a=b C a=\(\frac{1}{b^2}\) D a=\(b^2\)
16 đặt \(2^a=\)3 , khi đó \(log_3\sqrt[3]{16}\) bằng
1) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi T là tâm mặt cầu ngoại tiếp hình chóp S.ABCD. Hỏi góc giữa đường thẳng TB và BD là ?
2) Trong không gian Oxyz, cho điểm A(a;0;0), B(0;b;0), C(0;0;c) trong đó a>0, b>0, c>0 và \(\frac{1}{a}\)+ \(\frac{2}{b}\)+ \(\frac{3}{c}\)= 7. Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S): (x-1)2+ (y-2)2+ (z-3)2= \(\frac{72}{7}\). Thể tích của khối tứ diện OABC.
3)Cho các số thực a, b, c thỏa mãn \(\left\{{}\begin{matrix}a+c>b+1\\a+b+c+1< 0\end{matrix}\right.\). Tìm số giao điểm của đồ thị hàm số y=x3+ ax2+bx+c và trục Ox
4) Cho f(x) là hàm chẵn và \(\int\limits^5_0f\left(x\right)dx\) = 5, tính tích phân \(\int\limits^5_{-5}\frac{3}{2}f\left(x\right)dx\)=?
1) Tìm tất cả các giá trị của m để phương trình x+1=m\(\sqrt{2x^2+1}\)có 2 nghiệm phân biệt
A. \(\frac{-\sqrt{2}}{2}< m< \frac{\sqrt{6}}{6}\) B. \(m< \frac{\sqrt{2}}{2}\) C. \(m>\frac{\sqrt{6}}{6}\) D. \(\text{}\text{}\frac{\sqrt{2}}{2}< m< \frac{\sqrt{6}}{2}\)
2) Cho hình chóp S.ABC có đáy là ΔABC vuông cân ở B, AC=a\(\sqrt{2}\), SA ⊥ (ABC), SA=a. Gọi G là trọng tâm của ΔSBC, mp(α) đi qua A, G và song song với BC chia khối chóp thành hai phần. Gọi V là thể tích của khối đa diện không chứa đỉnh S. Tính V
A. \(\frac{4a^3}{9}\) B. \(\frac{4a^3}{27}\) C. \(\frac{5a^3}{54}\) D.\(\frac{2a^3}{9}\)
1 tập xác định của hàm số y=\(\left(x+3\right)^{-2}\) là
2 kết quả của tích phân I= \(\int_0^2\) \(x^{2020}\) dx là
3 cho khối chóp có tứ giác có đấy là hình vuông cạnh bằng 2, và chiều cao h =3. Tính thể tích của khối chóp đã cho
4 cho a là số thực dương khác 1. Tính I=\(3log_a\sqrt[3]{a}\)
A I=1 B I=9 C I=\(\frac{1}{9}\) D I= \(\frac{1}{3}\)
5 cho hình trụ có độ dài đường sinh l và bán kính r. Nếu độ dài đường sinh khối trụ tăng lên 3 lần, diện tích đấy k đổi thì thể tích khối trụ sẽ tăng lên
A 3 lần B \(\frac{1}{3}\) lần C 9 lần D 27 lần
6 Tọa độ giao điểm hai đường tiệm cận của đồ thị hàm số y= \(\frac{x-2}{x+1}\) là
A I(1;1) B I(-1;1) C I(1;-1) D I(-1;-1)
7 tập nghiệm của bất phương trình \(log_4\left(x^2+2x-3\right)< \frac{1}{2}\) là
A \(\left(-\infty;-3\right)\cup\left(1;+\infty\right)\) B \(\left(-1-\sqrt{6};-3\right)\cup\left(1;-1+\sqrt{6}\right)\) C [-3;1] D (-3;1)
8 giả sử \(\int_0^9\) f(x) dx=37 và \(\int_9^0\) g(x) . Khi đó i=\(\int_0^9\) [2f(x)+3g(x)] dx bằng
9 cho số phức z=\(\frac{1}{3-4i}\) . số phức liên hợp của z là
10 cho hai số phức z1=1+5i và z2=3-2i . Trên mặt phẳng tọa độ, điểm biểu diễn của số phức \(\overline{z}+iz_2\) là điểm nào dưới đấy
A. P(-1;-2) B.N(3;8) C.P(3;2) D Q(3;-2)
11 Trong ko gian oxyz , cho đường thẳng d : \(\frac{x +1}{1}=\frac{y-2}{3}=\frac{z}{-2}\) đi qua điểm M(0;5;m) . Gía trị của m là
A . m=0 B.m=-2 C.m=2 D.m=-1
12 Cho lăng trụ đúng ABC.\(A^,B^,C^,\) có đáy \(\Delta\) ABC vuông cân tại B ,AC =\(2\sqrt{2a}\) .Góc giữa đường thẳng \(A^,B\) và mặt phẳng (ABC) bằng \(60^0\) . Tính độ dài cạnh bên của hình lăng trụ
1cho hàm số f(x)liên tục trên đoạn [0;10] va\(\int_0^{10}\) f(x)dx=7 và \(\int_2^6\) f(x)dx =3. Tính P=\(\int_0^2\) f(x)dx+\(\int_6^{10}\) f(x)dx
A. P=7 B.P=-4 C.P=4 D.P=10
2 cho f(x) là một nguyên hàm của hàm số y =\(\frac{-1}{cos^2x}\) và f(x)=1. Khi đó , ta có F(x) là
A -tanx B -tanx+1 C tanx+1 D tanx-1
3 Cho A=\(\) \(\int\)x^5.\(\sqrt{1+x^2}\) dx=at^7+bt^5+c^3+C, với t=\(\sqrt{1+x^2}\). Tính A=a-b-c?
4 Tích phân I=\(\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\) \(\frac{dx}{sin^2x}\) bằng
A 1 B 3 C 4 D 2
5 Cho I=\(\int_2^a\) \(\frac{2x-1}{1-x}\)dx, xác định a đề I=-4-ln3
6 diện tích hình phẳng giới hạn bởi các đường cong y=x^3 và y=x^5 bằng
7 Tính thể tích V của khối tròn xoay tạo thành khi ta cho miền phẳng D giới hạn bởi các đường y=sin, trục hoành,x=0, x=\(\frac{\pi}{2}\) quay quanh trục Ox
8 Mô đun của số phức z=\(\frac{z-17i}{5-i}\) có phần thực là
9 cho số phức z thỏa (1-3i)z=8+6i. Mô đun của z bằng
10 phần thực của phức z thỏa (1+i)^2.(2-i)z=8+i+(1+2i)z la
11 cho zố phức z=-1-2i. điểm biểu diễn của số phức z là
A diểm D B diểm B c điểm C D điểm A