Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
anh quân
Xem chi tiết
Nguyễn Thị Hằng
30 tháng 4 2015 lúc 21:01

Ta có : đenta' = (-m)- (m+1)(m-1) 
                     = m2-(m2-1)
                     =m2-m2 +1
                     =1 >0
==> phương trình luôn có 2 nghiệm phân biệt với mọi m khác 1

Khang Lương Vĩnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2022 lúc 21:52

\(\text{Δ}=\left(2m\right)^2-4\left(-m+3\right)\)

\(=4m^2+4m-12\)

\(=4\left(m^2+m-3\right)\)

=>Đề sai rồi bạn

Thảo Nguyễn
Xem chi tiết
Hồng Nhan
14 tháng 3 2022 lúc 17:49

\(\Delta=\left(2m\right)^2-4.1.\left[-\left(2m+3\right)\right]=4m^2+8m+12\)

\(=4.\left(m^2+2m+3\right)=4.\left(m+1\right)^2+8\ge8>0\)   ∀m

⇒ Phương trình đã cho luôn có 2 nghiệm phân biệt với mọi m (ĐPCM)

[Aικᴀɴツ]ღ
Xem chi tiết
💋Bevis💋
24 tháng 7 2019 lúc 20:07

\(x^2-2mx+3m-2=0\)

Thay m = -1 vào PT ta được:

\(x^2-2\left(-1\right)x+3\left(-1\right)-2=0\)

\(\Rightarrow x^2+2x-5=0\)

\(\Delta'=b'^2-ac=1^2-1.\left(-5\right)=6>0\)

Do \(\Delta'>0\Rightarrow\)PT có hai nghiệm phân biệt:

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=-1+\sqrt{6}\)

\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=-1-\sqrt{6}\)

doraemon
Xem chi tiết
ILoveMath
5 tháng 3 2022 lúc 8:30

Ta có:\(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m^2-2m+1\right)+2=\left(m-1\right)^2+2>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

\(a) x^2 - 2mx + 2m - 3 = 0.\)

\(∆ ' = m^2 -(2m-3) = m^2 -2m +1 +2 = (m-1) ^2 +2\)

\((m+1) ^2 ≥0 <=> (m+1)^2 +2 ≥2 >0\)

\(=> ∆'>0 <=> PT\) luôn có 2 nghiệm \(PB\) với mọi m

꧁༺๖ۣ๖ۣۜSkyღ๖ۣۜlạnh☯๖ۣۜlùngɠɠ༻꧂

Khách vãng lai đã xóa

\(b) x^2 - 2mx + 2m - 3 = 0. \)


\(PT\)có 2 nghiệm trái dấu


\(<=> 1.(2m-3) <0\)


\(<=> 2m-3 <0\)

\(<=> m <3/2\)

Khách vãng lai đã xóa
Nguyễn Minh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2022 lúc 19:58

\(\text{Δ}=\left(-4\right)^2-4\cdot1\cdot\left(-m^2-3\right)=16+4m^2+12=4m^2+28>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Hoàng Nguyệt
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
12 tháng 5 2021 lúc 22:48

Ta có: \(\Delta'=2m^2+4>0\forall m\)

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m^2-4\end{matrix}\right.\)

Mặt khác: \(x_1^2+x_2^2=20\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)

\(\Rightarrow4m^2+2m^2-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=\dfrac{3}{2}\end{matrix}\right.\)

  Vậy ...

Nguyên
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 4 2021 lúc 22:24

\(ac=-3< 0\Rightarrow\) pt đã cho luôn có 2 nghiệm pb trái dấu với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3\end{matrix}\right.\)

\(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\Leftrightarrow\dfrac{x_1^3+x_2^3}{\left(x_1x_2\right)^2}=m-1\)

\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{9}=m-1\)

\(\Leftrightarrow8\left(m-1\right)^3+18\left(m-1\right)=9\left(m-1\right)\)

\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\8\left(m-1\right)^2+9=0\left(vô-nghiệm\right)\end{matrix}\right.\)

Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 1 2024 lúc 21:56

1:Phương trình luôn có nghiệm với mọi m<>0

Sửa đề: Chứng minh 

TH1: m=0

Phương trình sẽ trở thành \(0x^2-2\left(0+1\right)x+1-3\cdot0=0\)

=>1=0(vô lý)

TH2: m<>0

\(\Delta=\left[-2\left(m+1\right)\right]^2-4\cdot m\cdot\left(1-3m\right)\)

\(=4\left(m+1\right)^2-4m+12m^2\)

\(=4m^2+8m+4-4m+12m^2\)

\(=16m^2+4m+4\)

\(=16\left(m^2+\dfrac{1}{4}m+\dfrac{1}{4}\right)\)

\(=16\left(m^2+2\cdot m\cdot\dfrac{1}{8}+\dfrac{1}{64}+\dfrac{15}{64}\right)\)

\(=16\left(m+\dfrac{1}{8}\right)^2+\dfrac{15}{4}>=\dfrac{15}{4}>0\forall m\)

=>Phương trình luôn có nghiệm với mọi m<>0

2: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m+1\right)\right]}{m}=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{c}{a}=\dfrac{1-3m}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(\dfrac{2m+2}{m}\right)^2-2\cdot\dfrac{1-3m}{m}\)

\(=\dfrac{4m^2+8m+4}{m^2}+\dfrac{6m-2}{m}\)

\(=\dfrac{4m^2+8m+4+6m^2-2m}{m^2}\)

\(=\dfrac{10m^2+6m+4}{m^2}\)

\(=10+\dfrac{6}{m}+\dfrac{4}{m^2}\)

\(=\left(\dfrac{2}{m}\right)^2+2\cdot\dfrac{2}{m}\cdot1,5+2,25+7,75\)

\(=\left(\dfrac{2}{m}+1,5\right)^2+7,75>=7,75\forall m\ne0\)

Dấu '=' xảy ra khi \(\dfrac{2}{m}+1,5=0\)

=>\(\dfrac{2}{m}=-1,5\)

=>\(m=-\dfrac{2}{1,5}=-\dfrac{4}{3}\)

Nguyễn Việt Lâm
23 tháng 1 2024 lúc 21:57

Với \(m=0\) pt có nghiệm

Với \(m\ne0\)

\(\Delta'=\left(m+1\right)^2-m\left(1-3m\right)=4m^2+m+1=\left(m+\dfrac{1}{8}\right)^2+\dfrac{15}{16}>0;\forall m\)

Pt luôn có nghiệm với mọi m

b. Câu này chắc đề đúng là "với m khác 0"

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{m}\\x_1x_2=\dfrac{1-3m}{m}\end{matrix}\right.\)

\(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\dfrac{4\left(m+1\right)^2}{m^2}-\dfrac{2\left(1-3m\right)}{m}\)

\(=\dfrac{10m^2+6m+4}{m^2}=\dfrac{4}{m^2}+\dfrac{6}{m}+10\)

\(=4\left(\dfrac{1}{m}+\dfrac{3}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Dấu "=" xảy ra khi \(m=-\dfrac{4}{3}\)