a) 3√64a2 + 4a (a≥0) ; 5√121a2 + 7a (a<0)
b) 3√144x6 - 13x3 (x≥0) ; 12x3 + 2√49x6 (x<0)
c) 15√196x4 + 12x2 ; √225x4 - 14x2 ; √11+6√2 - 3 + √2
Help
giải phương trình x^3-(4a+3)x^2+4a(a+2)x-4(a^2-1)=0 theo a
a) \(a^2-6a+10=\left(a^2-6a+9\right)+1=\left(a-3\right)^2+1\ge1\left(\forall a\right)\)
Dấu "=" xảy ra khi a = 3
b) \(4a^4-4a^3+a^2=a^2\left(4a^2-4a+1\right)=\left[a\left(2a-1\right)\right]^2\ge0\left(\forall a\right)\)
Dấu "=" xảy ra khi: \(\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)
c) \(x^3+y^3=\frac{1}{3}\left(3x^3+3y^3\right)\)
\(=\frac{1}{3}\left[\left(x^3+x^3+y^3\right)+\left(x^3+y^3+y^3\right)\right]\ge\frac{1}{3}\left(3x^2y+3xy^2\right)=x^2y+xy^2\) (Cauchy)
Dấu "=" xảy ra khi: x = y
cmr: gt biểu thức P=a^4-4a^3+5a^2-4a+5>0 với mọi a
\(P=\left(a^4-4a^3+4a^2\right)+\left(a^2-4a+4\right)+1\)
\(P=\left(a^2+a\right)^2+\left(a-2\right)^2+1>0\) \(\forall a\)
cho a,b,c ko âm a+b+c>0 CMR a/4a +4b+c +b/4b+4a+c +c/4c+4a+b<=1/3
giải nhanh giúp mk nhé!!!!
rút gọn các biểu thức sau
c,\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\) d,\(5\sqrt{16a}-4\sqrt{25a}-2\sqrt{100a}+\sqrt{169a}\) với a ≥ 0
e,\(5\sqrt{4a}-4\sqrt{a^2}-\sqrt{100a}\) với a ≥ 0 f,\(3\sqrt{4a^6}-5^3\) với a ≤ 0
1) cho: 4a^3-3a+(b-1)\(\sqrt{2b+1}\)=0
biết \(\frac{-1}{2}\)=<b=<0 . Cmr: \(\sqrt{2b+1}\)+2a=0
2)cho (4a^2+1)a+(b-3)\(\sqrt{5-2b}\)=0
biết a>=0 Cmr: 2b+4a^2=5
Cho a,b là các số thõa mãn a>b>0 và a^3 - a^2b +ab^2- 6b^3=0 . Tính P = (a^4 - 4b^4)/(b^4 - 4a^4)
Ta có: \(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a^3-2a^2b\right)+\left(a^2b-2ab^2\right)+\left(3ab^2-6b^3\right)=0\)
\(\Leftrightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\)
mà \(a^2+ab+3b^2>0\forall a>b>0\)
nên a-2b=0
hay a=2b
Ta có: \(P=\dfrac{a^4-b^4}{b^4-4a^4}\)
\(=\dfrac{\left(2b\right)^4-b^4}{b^4-4\cdot\left(2b\right)^4}=\dfrac{16b^4-b^4}{b^4-4\cdot16b^4}=\dfrac{15b^4}{-63b^4}=\dfrac{-5}{21}\)
cho a>0. Chứng minh BĐT 4a\(^3\)+\(\frac{1}{a}\)\(\ge\)4a
Phân tích đa thức sau thành nhân tử:
a) 40x4-10x2
b) 16x4-20x2-y2-5y
c) 64a2-9b2-16a+1
d) 5x2+23x-10
e) 7x2-13xy-2y2
f) x4-23x2y2+y4
g) (x2+3x)2+7(x2+3x)+10
h) x(x+1)(x+2)(x+3)-8
a) \(40x^4-10x^2=10x^2\left(4x^2-1\right)=10x^2\left(2x-1\right)\left(2x+1\right)\)
b) \(16x^4-20x^2-y^2-5y=\left(4x^2-\dfrac{5}{2}\right)^2-\left(y-\dfrac{5}{2}\right)^2=\left(4x^2-\dfrac{5}{2}-y+\dfrac{5}{2}\right)\left(4x^2-\dfrac{5}{2}+y-\dfrac{5}{2}\right)=\left(4x^2-y\right)\left(4x^2+y-5\right)\)c)\(64a^2-9b^2-16a+1=\left(8a-1\right)^2-9b^2=\left(8a-1-3b\right)\left(8a-1+3b\right)\)d) \(5x^2+23x-10=5\left(x-\dfrac{2}{5}\right)\left(x+5\right)\)
a: \(40x^4-10x^2\)
\(=10x^2\left(4x^2-1\right)\)
\(=10x^2\cdot\left(2x-1\right)\left(2x+1\right)\)
b: \(16x^4-20x^2-y^2-5y\)
\(=\left(4x^2-y\right)\left(4x^2+y\right)-5\left(4x^2+y\right)\)
\(=\left(4x^2+y\right)\left(4x^2-y-5\right)\)
c: Ta có: \(64a^2-9b^2-16a+1\)
\(=\left(8a-1\right)^2-9b^2\)
\(=\left(8a-1-3b\right)\left(8a-1+3b\right)\)
d: Ta có: \(5x^2+23x-10\)
\(=5x^2+25x-2x-10\)
\(=\left(x+5\right)\left(5x-2\right)\)
\(\sqrt{4x^2-4x+1}+2=3x\)
Rút gọn
\(7\sqrt{a}-5b\sqrt{16a^3}+4a\sqrt{25ab^2}-3\sqrt{16a}\) với a>0, b>0
\(\sqrt{4x^2-4x+1}+2=3x\)
Vì \(VT\ge2\Rightarrow VP\ge2\Rightarrow x\ge\dfrac{2}{3}\)
\(\Rightarrow\sqrt{\left(2x-1\right)^2}+2=3x\Rightarrow\left|2x-1\right|+2=3x\)
\(\Rightarrow2x-1+2=3x\left(x\ge\dfrac{2}{3}\right)\Rightarrow x=1\)
\(7\sqrt{a}-5b\sqrt{16a^3}+4a\sqrt{25ab^2}-3\sqrt{16a}\)
\(=7\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-12\sqrt{a}=-5\sqrt{a}\)