Chứng minh :
a) \(\dfrac{3x}{2y}+\dfrac{3}{2}\sqrt{\dfrac{3}{5}}-\sqrt{\dfrac{3}{4}}=\dfrac{3\sqrt{x}}{2}.\left(\dfrac{\sqrt{x}}{y}+\sqrt{\dfrac{3}{5x}}-\sqrt{\dfrac{1}{3}}\right)\)
b)\(ab.\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\) , với a ; b > 0
c) \(\left(\dfrac{3}{a}\sqrt{\dfrac{a^3}{b}}-\dfrac{1}{2}\sqrt{\dfrac{4}{ab}}-2\sqrt{\dfrac{b}{a}}\right):\sqrt{\dfrac{1}{ab}}=3a-2b-1\) với a, b >0
d)\(\left(\sqrt{\dfrac{16a}{b}}+3\sqrt{4ab}-a\sqrt{\dfrac{36b}{a}}+2\sqrt{ab}\right):\left(\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{a}{b}}\right)=2\) Với a, b >0
Mọi người giúp tớ với ạ !!!!!! Mình thật sự cần gấp vào ngày mai !!!!
1)Cho a;b;c>0 thỏa \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\)
Chứng minh \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le1\)
2) Cho a;b;c>0
CMR \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Cho a;b;c>0 thỏa a+b+c=3
CMR \(\dfrac{a+b}{\sqrt{a^2+b^2+6c}}+\dfrac{b+c}{\sqrt{b^2+c^2+6a}}+\dfrac{c+a}{\sqrt{c^2+a^2+6b}}>2\)
Gỉa sử phương trình x2+ax+b=0 có 2 nghiệm lớn hơn 1. CMR:
\(\frac{a^2-a-2b}{b-a+1}\ge\frac{2\sqrt{b}}{1+\sqrt{b}}\)
bài 38 :rút gọn các biểu thức
a)2ab\(\sqrt{\dfrac{225}{a^2b^4}}\)(với a<0,b\(\ne\)0) b)\(\sqrt{\dfrac{20\left(a-1\right)^2}{45}}\)(với a<1)
c)\(\sqrt{\dfrac{9a^2-6a+1}{b^2}}\)(với b>0,a>\(\dfrac{1}{3}\)) d)\(\left(a-2\right).\sqrt{\dfrac{a^2}{a^2-4a+4}}\) (với 0<a<2)
2) Cho a >= 0 b > 0 và a ^ 2 + b ^ 2 = 8 Tìm giá trị lớn nhất của biểu thức M = sqrt(3) * (sqrt(a(a + 2b)) + sqrt(b(b + 2a)))
bà 1 rút gọn biểu thức :\(\sqrt{9ab}\) + 7\(\sqrt{\dfrac{a}{b}}\) - 5\(\sqrt{\dfrac{b}{a}}\) - 3ab \(\sqrt{\dfrac{1}{ab}}\)
bài 2 :cho a>0,b>0 chứng minh : \(\dfrac{a^2b}{a-b}\).\(\sqrt{\dfrac{8\left(a^2-2ab+b^2\right)}{75a^4b}}\) = \(\dfrac{2}{15}\) .\(\sqrt{6b}\)
1. với \(a=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}};b=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17+12\sqrt{2}}\) tính giá trị biểu thức \(A=a^3+b^3-3\left(a+b\right)\)
2. Giải hệ \(\left\{{}\begin{matrix}2y^2-x^2=1\\2\left(x^3-y\right)=y^3-x\end{matrix}\right.\)
3. cho hai số thức m, n khác 0 thỏa mãn \(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\). crm: \(\left(x^2+mx+n\right)\left(x^2+nx+m\right)=0\) luôn có nghiệm
4. cho a, b, c là độ dài ba cạnh của một tam giác. Cm: \(\sqrt{\frac{a}{2b+2c-a}}+\sqrt{\frac{b}{2a+2c-b}}+\sqrt{\frac{c}{2a+2b-c}}\ge\sqrt{3}\)
giai chi tiet cho minh nha mn ^^:
cho a,b,c>0 thõa mãn 2b=a+c. Cmr: \(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}=\dfrac{2}{\sqrt{c}+\sqrt{a}}\)
Cho a,b,c >0 thoar manx ab + bc + ca =5abc
CMR: \(P=\frac{1}{2a+2b+2c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\le1\)