Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ánh Dương

1. với \(a=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}};b=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17+12\sqrt{2}}\) tính giá trị biểu thức \(A=a^3+b^3-3\left(a+b\right)\)

2. Giải hệ \(\left\{{}\begin{matrix}2y^2-x^2=1\\2\left(x^3-y\right)=y^3-x\end{matrix}\right.\)

3. cho hai số thức m, n khác 0 thỏa mãn \(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\). crm: \(\left(x^2+mx+n\right)\left(x^2+nx+m\right)=0\) luôn có nghiệm

4. cho a, b, c là độ dài ba cạnh của một tam giác. Cm: \(\sqrt{\frac{a}{2b+2c-a}}+\sqrt{\frac{b}{2a+2c-b}}+\sqrt{\frac{c}{2a+2b-c}}\ge\sqrt{3}\)

Nguyễn Việt Lâm
24 tháng 10 2019 lúc 19:52

Biểu thức b chắc ghi nhầm, 1 căn dấu trừ thì hợp lý

\(a^3=6+3a.\sqrt[3]{9-4.2}=3a+6\Rightarrow a^3-3a=6\)

\(b^3=34+3b.\sqrt{17^2-12^2.2}=3b+34\Rightarrow b^3-3b=34\)

\(\Rightarrow A=a^3-3a+b^3-3b=6+34=40\)

2/ \(\Leftrightarrow\left\{{}\begin{matrix}2y^2-x^2=1\\2x^3-y^3=1.\left(2y-x\right)\end{matrix}\right.\)

\(\Rightarrow2x^3-y^3=\left(2y^2-x^2\right)\left(2y-x\right)\)

\(\Leftrightarrow x^3+2x^2y+2xy^2-5y^3=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+3xy+5y^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\Rightarrow2x^2-x^2=1\Rightarrow...\\x^2+3xy+5y^2=0\left(1\right)\end{matrix}\right.\)

Xét (1): \(\Leftrightarrow\left(x+\frac{3y}{2}\right)^2+\frac{11y^2}{4}=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) thay vào hệ ko thỏa mãn (loại)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 10 2019 lúc 20:01

\(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\Leftrightarrow2\left(m+n\right)=mn\)

\(\left\{{}\begin{matrix}\Delta_1=m^2-4n\\\Delta_2=n^2-4m\end{matrix}\right.\)

\(\Rightarrow P=\Delta_1+\Delta_2=m^2+m^2-4\left(m+n\right)\)

\(=m^2+n^2-2mn=\left(m-n\right)^2\ge0\)

\(\Rightarrow\) Luôn có ít nhất 1 trong 2 giá trị \(\Delta_1\) hoặc \(\Delta_2\) không âm nên luôn có ít nhất 1 trong 2 pt trên có nghiệm \(\Rightarrow\) pt luôn luôn có nghiệm

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 10 2019 lúc 20:29

\(P=\sum\frac{\sqrt{3}.a}{\sqrt{3a}.\sqrt{2b+2c-a}}\ge\sum\frac{2\sqrt{3}a}{3a+2b+2c-a}=\sum\frac{2\sqrt{3}a}{2\left(a+b+c\right)}=\sum\frac{\sqrt{3}a}{a+b+c}=\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c\) hay tam giác đã cho đều

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đào Ngọc Quý
Xem chi tiết
Hà Lê
Xem chi tiết
ank viet
Xem chi tiết
Ánh Dương
Xem chi tiết
Eng Ther
Xem chi tiết
Đặng Thị Thanh Thảo
Xem chi tiết
DRACULA
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Vũ
Xem chi tiết