Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ

cho biểu thức A=\(\frac{2\sqrt{x}+1}{x+\sqrt{x}}\) và B=\(\left(1-\frac{2\sqrt{x}}{3\sqrt{x}+1}+\frac{\sqrt{x}+1}{9x-1}\right):\frac{3}{3\sqrt{x}+1}\) với x>0, x≠\(\frac{1}{9}\)

1, tính giá trị của A khi x=\(\left(1+\frac{10+\sqrt{10}}{1+\sqrt{10}}\right)\left(\frac{10-\sqrt{10}}{\sqrt{10}-1}-1\right)\)

2, rút gọn biểu thức B

3, đặt P=A.B. tìm các giá trị nguyên của x để P có giá trị nguyên

santa
28 tháng 6 2020 lúc 12:13

1/ \(x=\left(1+\frac{10+\sqrt{10}}{1+\sqrt{10}}\right)\left(\frac{10-\sqrt{10}}{\sqrt{10}-1}-1\right)\)

\(x=\left(1+\frac{\sqrt{10}\left(\sqrt{10}+1\right)}{1+\sqrt{10}}\right)\left(\frac{\sqrt{10}\left(\sqrt{10}-1\right)}{\sqrt{10}-1}-1\right)\)

\(x=\left(1+\sqrt{10}\right)\left(\sqrt{10}-1\right)\)

\(x=10-1=9\)

Thay \(x=9\) vào A:

\(A=\frac{2\sqrt{9}+1}{9+\sqrt{9}}=\frac{7}{12}\)

Vậy với \(x=\left(1+\frac{10+\sqrt{10}}{1+\sqrt{10}}\right)\left(\frac{10-\sqrt{10}}{\sqrt{10}-1}-1\right)\Leftrightarrow A=\frac{7}{12}\)

2/ \(B=\left(1-\frac{2\sqrt{x}}{3\sqrt{x}+1}+\frac{\sqrt{x}+1}{9x-1}\right):\frac{3}{3\sqrt{x}+1}\)

\(\Leftrightarrow B=\frac{9x-1-2\sqrt{x}\left(3\sqrt{x}-1\right)+\sqrt{x}+1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\frac{3\sqrt{x}+1}{3}\)

\(\Leftrightarrow B=\frac{9x-1-6x+2\sqrt{x}+\sqrt{x}+1}{3\left(3\sqrt{x}-1\right)}\)

\(\Leftrightarrow B=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)

3/ \(P=A.B=\frac{2\sqrt{x}+1}{x+\sqrt{x}}\cdot\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{2\sqrt{x}+1}{3\sqrt{x}-1}\)

Để \(P\in Z\Leftrightarrow2\sqrt{x}+1⋮3\sqrt{x}-1\)

\(\Leftrightarrow6\sqrt{x}+2⋮3\sqrt{x}-1\)

\(\Leftrightarrow2\left(3\sqrt{x}-1\right)+4⋮3\sqrt{x}-1\)

\(\Leftrightarrow4⋮3\sqrt{x}-1\)

\(\Leftrightarrow3\sqrt{x}-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow3\sqrt{x}\in\left\{0;2;-1;3;-3;5\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;\frac{2}{3};-\frac{1}{3};1;-1;\frac{5}{3}\right\}\)

\(\Leftrightarrow x\in\left\{0;\frac{4}{9};\frac{1}{9};1;\frac{25}{9}\right\}\)

Loại bỏ những giá trị x < 0 , x \(x\notin Z\)và x không thỏa mãn ĐKXĐ

Vậy để \(P\in Z\Leftrightarrow x\in\left\{1\right\}\)

Nguyễn Lê Phước Thịnh
28 tháng 6 2020 lúc 11:59

1: Ta có: \(x=\left(1+\frac{10+\sqrt{10}}{1+\sqrt{10}}\right)\cdot\left(\frac{10-\sqrt{10}}{\sqrt{10}-1}-1\right)\)

\(=\left(\frac{1+\sqrt{10}+10+\sqrt{10}}{1+\sqrt{10}}\right)\cdot\left(\frac{10-\sqrt{10}-\left(\sqrt{10}-1\right)}{\sqrt{10}-1}\right)\)

\(=\frac{1+2\sqrt{10}\cdot1+\left(\sqrt{10}\right)^2}{1+\sqrt{10}}\cdot\frac{\left(\sqrt{10}\right)^2-2\cdot\sqrt{10}\cdot1+1}{\sqrt{10}-1}\)

\(=\left(1+\sqrt{10}\right)\cdot\left(\sqrt{10}-1\right)\)

\(=10-1=9\)

Thay x=9 vào biểu thức \(A=\frac{2\sqrt{x}+1}{x+\sqrt{x}}\), ta được:

\(A=\frac{2\cdot\sqrt{9}+1}{9+\sqrt{9}}=\frac{2\cdot3+1}{9+3}=\frac{7}{12}\)

Vậy: \(\frac{7}{12}\) là giá trị của biểu thức \(A=\frac{2\sqrt{x}+1}{x+\sqrt{x}}\) tại \(x=\left(1+\frac{10+\sqrt{10}}{1+\sqrt{10}}\right)\cdot\left(\frac{10-\sqrt{10}}{\sqrt{10}-1}-1\right)\)

2: Ta có: \(B=\left(1-\frac{2\sqrt{x}}{3\sqrt{x}+1}+\frac{\sqrt{x}+1}{9x-1}\right):\frac{3}{3\sqrt{x}+1}\)

\(=\left(\frac{9x-1}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}-\frac{2\sqrt{x}\left(3\sqrt{x}-1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}+\frac{\sqrt{x}+1}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right)\cdot\frac{3\sqrt{x}+1}{3}\)

\(=\frac{9x-1-6x+2\sqrt{x}+\sqrt{x}+1}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\cdot\frac{3\sqrt{x}+1}{3}\)

\(=\frac{3x+3\sqrt{x}+2}{9\sqrt{x}-3}\)


Các câu hỏi tương tự
Nguyễn Mai
Xem chi tiết
nguyễn phương ngọc
Xem chi tiết
Linh Nguyen
Xem chi tiết
Sonyeondan Bangtan
Xem chi tiết
Alice dono
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Ngô Thanh Huyền
Xem chi tiết
Mai Linh
Xem chi tiết
Chocolate ^.^
Xem chi tiết