|căn x+7 +1|+|1- Căn x+7|>=0
a) ( x - 3)4 + ( x - 5)4 = 82
Đặt : x - 4 = a , ta có :
( a + 1)4 + ( a - 1)4 = 82
⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82
⇔ 2a4 + 12a2 - 80 = 0
⇔ 2( a4 + 6a2 - 40) = 0
⇔ a4 - 4a2 + 10a2 - 40 = 0
⇔ a2( a2 - 4) + 10( a2 - 4) = 0
⇔ ( a2 - 4)( a2 + 10) = 0
Do : a2 + 10 > 0
⇒ a2 - 4 = 0
⇔ a = + - 2
+) Với : a = 2 , ta có :
x - 4 = 2
⇔ x = 6
+) Với : a = -2 , ta có :
x - 4 = -2
⇔ x = 2
KL.....
b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8
⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680
⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680
Đặt : n2 - 9n + 19 = t , ta có :
( t - 1)( t + 1) = 1680
⇔ t2 - 1 = 1680
⇔ t2 - 412 = 0
⇔ ( t - 41)( t + 41) = 0
⇔ t = 41 hoặc t = - 41
+) Với : t = 41 , ta có :
n2 - 9n + 19 = 41
⇔ n2 - 9n - 22 = 0
⇔ n2 + 2n - 11n - 22 = 0
⇔ n( n + 2) - 11( n + 2) = 0
⇔ ( n + 2)( n - 11) = 0
⇔ n = - 2 hoặc n = 11
+) Với : t = -41 ( giải tương tự )
Có mấy câu này hơi khó nhờ mọi người giải dùm:
a. Căn (x - 5) = x - 7
b. căn ( x + 2) - căn ( x - 6) = 2
c. Căn [x - 2 - 2 căn (x-3) = 1
d. x^2 - 3x -7 + căn ( x^2 - 3x + 5) = 0(x
ko phải hơi khó mà là hơi dài -_-",chờ tí nhé
a)bình phương 2 vế ta được
\(\sqrt{\left(x-5\right)^2}=\left(x-7\right)^2\)
\(\Leftrightarrow\left(x-5\right)=x^2-14x+49\)
\(\Leftrightarrow\left(x-5\right)-x^2-14x+49=0\)
\(\Leftrightarrow-x^2+15x-54=0\)
Denta:152-4.54=9
\(x_1=-\frac{-15+\sqrt{9}}{2}=9\)
\(x_2=-\frac{-15-\sqrt{9}}{2}=6\)
b)dễ rùi x=7
c)ko hiểu đề
d)VP hơi lạ
a. √(x-5) = x-7 => pt có nghĩa khi x-5 ≥ 0 <=> ta có điều kiện để xét nghiệm x ≥ 5
<=> x-5= (x-7)^2 <=> x-5 = x^2 - 14x +49
<=> x^2 - 15x +54 = 0 ∆ = (-15)^2 - 4.54 = 9 >0
x1= (15 + √9)/2=9 (TM) x2= (15 - √9)/2 = 6(TM)
b. √(x+2) - √(x-6) =2 để pt có nghĩa ta có: x+2 ≥ 0 <=> x ≥ -2 và x-6≥ 0 <=> x ≥ 6
ta có điều kiện để xét nghiệm là x ≥ 6
<=> √(x+2)=2 + √(x-6)
bình phương 2 vế ta đc: x +2 = 4 + 4.√(x-6) + x - 6 <=> 4.√(x-6) = 4 <=> √(x-6) = 1
<=> x-6 = 1 =>x=7 (TM)
c. √[x - 2 - 2√(x-3) ] = 1 để pt có nghĩa ta có : x-3 ≥ 0 <=> x≥ 3
và x-2-2√(x-3) ≥0 =>........
sau đó bình phương 2 vế của pt ban đầu và giải
Tham khảo thanh này để soạn đề chính xác hơn nha :vvv
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
1. So sánh 1+căn 15 và căn 24
2.Giải phương trình
a. x^3-5x^2=2x^2-10
b.3x-7 căn x= 20
c.1+ căn 3x > 3
d. x^2 - x căn x - 5x - căn x - 6 = 0
1/
Ta có: \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)
\(\sqrt{24}^2\)= 24 = 16 + 8
Vì: \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)
Nên: \(\sqrt{15}< 4\)
=> \(2\sqrt{15}< 8\)
=> \(16+2\sqrt{15}< 24\)
=> \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
2/
b/ \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)
<=> \(3x-7\sqrt{x}-20=0\)
<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)
<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)
<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)
<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)
<=> \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)
<=> \(x=16\)
Vậy S=\(\left\{16\right\}\)
c/ \(1+\sqrt{3x}>3\)
<=> \(\sqrt{3x}>2\)
<=> \(3x>4\)
<=> \(x>\frac{4}{3}\)
d/ \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))
<=> \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)
<=> \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\)
<=> \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)
<=> \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)
<=> \(x+1=0\) hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)
<=> \(x=-1\)(loại) hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)
Vậy S={ 9 }
bài: tìm x
a) |x-1|=2x
b)căn bậc hai của 2x-3 -7=4 (căn bậc 2 của 2x-3 thôi 7 ko có căn)
c)căn bậc hai của 3x-2 +7=0 (căn bậc 2 của 3x-2 thôi 7 ko có căn)
d) |x-3|=|4-x|
b) \(\sqrt{2x-3}-7=4\)
\(\sqrt{2x-3}=11\)
\(\left(\sqrt{2x-3}\right)^2=11^2\)
\(2x-3=121\)
\(2x=124\)
\(x=62\)
c) \(\sqrt{3x-2}+7=0\)
\(\sqrt{3x-2}=-7\)
\(\Rightarrow x=\varnothing\)
bạn Hoàng Thanh Huyền ơi! cảm ơn đã là giúp nhưng phần a) bạn làm đến dong thứ 3 thì mk bt làm r nhưng mũ 2 phải chia ra hai trường hợp chứ :))
Ok, mình hiểu ý bạn! Và mình lm câu b) chứ ko phải câu a)
\(\sqrt{2x-3}=11\)
\(\Rightarrow2x-3=11^2=121\)
Bạn phải hiểu là: căn 2x-3 bình phương lên thì mất căn nên sẽ có 1 và chỉ 1 trường hợp xảy ra.
Ở đây, \(\left(\sqrt{2x-3}\right)^2=11^2\) cùng số mũ là 2 => cơ số bằng nhau <=> 2x-3= 121
Bạn có đọc lưu ý SGK chưa?? Để mình ví dụ cho bạn nhá :))
\(\sqrt{9}=3\)chứ ko phải 2 trường hợp là: -3;3
\(-\sqrt{9}=-3\)
Dù sao thì học tốt nha!!! Nhớ đọc lưu ý SGK bài căn bậc 2 ấy chứ ko phải 2 trg hợp như bài tìm x kia đâu=.=
giải hệ phương trình sau : 2(x^2-2x) + căn(y+1)=0
3(x^2-2x) -2.căn(y+1)+7=0
Q = căn x )/(2 căn x +1) + (x+1)/(2x-căn x -1)*[(2x căn x -x- căn x)/(x căn x +1) - (x- căn x)/(x-1)]
rút gọn A tính gt của A khi x=7-4 căn3
tìm GTLN
x,y,z>0;x+y+z=3 . tìm GTNN của
P= căn(x2+x+1) + căn(y2+y+1)+căn(z2-4z+7)
\(\sqrt{\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}+\sqrt{\left(y+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}_{ }+\sqrt{\left(z-2\right)^2+\left(\sqrt{3}\right)^2}\ge.\)
\(\sqrt{\left(x+y+1\right)^2+\left(\sqrt{3}\right)^2}+\sqrt{\left(z-2\right)^2+\left(\sqrt{3}\right)^2}\ge\sqrt{\left(x+y+z-1\right)^2+12}=4.\)
Sử dụng Minkowski,