Cho đa thức f(x)= x\(^4\)+ax\(^3\)+bx\(^2\)+cx biết
f(1)=10 , f(2)=20,f(3)=30
Tính f(12)+f(-8)
Cho đa thức: \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\) ( với a, b, c, d là các số thực). Biết f(1)=10; f(2)=20; f(3)=30. Tính giá trị của biểu thức: A=f(8)+f(-4)
Đặt \(g(x)=10x\).
Ta có \(g\left(1\right)=10=f\left(1\right);g\left(2\right)=20=f\left(2\right);g\left(3\right)=30=f\left(3\right)\).
Từ đó \(\left\{{}\begin{matrix}f\left(1\right)-g\left(1\right)=0\\f\left(2\right)-g\left(2\right)=0\\f\left(3\right)-g\left(3\right)=0\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=Q\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\).
\(\Rightarrow f\left(x\right)=10x+Q\left(x\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
\(\Rightarrow f\left(8\right)+f\left(-4\right)=80+Q\left(x\right).7.6.5+\left(-40\right)+Q\left(x\right).\left(-5\right).\left(-6\right).\left(-7\right)=80-50=40\).
Cho đa thức f(x)=x4+ax3+bx2+cx+d(với a,b,c là các số thực ).
Biết f(1)=10;f(2)=20;f(3)=30.Tính f(8)-f(-4).
Cho đa thức \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\)(với a,b,c,d là các số thực).
Biết f(1)=10; f(2)=20; f(3)=30. Tính giá trị bieur thức A=f(8)-f(-4)
Cho đa thức: \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\)
biết \(f\left(1\right)=10;f\left(2\right)=20;f\left(3\right)=30\)
\(CMR:\dfrac{f\left(12\right)+f\left(-8\right)}{10}+26=2010\)
Lời giải:
Ta có thể viết dạng của $f(x)$ như sau:
\(f(x)=(x-1)(x-2)(x-3)(x-t)+g(x)\)
Trong đó, \(t\) là một số bất kỳ nào đó và \(g(x)\) là đa thức có bậc nhỏ hơn hoặc bằng $3$
Giả sử \(g(x)=mx^3+nx^2+px\)
\(\left\{\begin{matrix} f(1)=g(1)=m+n+p=10\\ f(2)=g(2)=8m+4n+2p=20\\ f(3)=g(3)=27m+9n+3p=30\end{matrix}\right.\)
Giải hệ trên thu được \(m=0,n=0,p=10\)
Như vậy \(f(x)=(x-1)(x-2)(x-3)(x-t)+10x\)
Do đó \(\left\{\begin{matrix} f(12)=990(12-t)+120=12000-990t\\ f(-8)=-990(-8-t)-80=7840+990t\end{matrix}\right.\)
\(\Rightarrow \frac{f(12)+f(-8)}{10}+26=\frac{12000+7840}{10}+26=2010\) (đpcm)
1/ Xác định đa thức bậc 3:f(0) =10 ; f(1) =12;f(2) = 4; f(3) =1
2/ Cho \(P\left(x\right)=x^4+ãx^3+bx^2+cx+d\)
biết P(1) =10; P(2) =20; P(3)=30. Tính P(12)+P(8)
Cho phân số f(x)=\(x^4+ax^3+bx^2+cx+d\),biết f(1) = 10; f(2)=20; f(3)= 30
Tính P = \(\frac{f\left(12\right)+f\left(-8\right)}{10}+25\)
Ta có:
\(P\left(1\right)=a+b+c+d+1\)
\(P\left(2\right)=8a+4b+2c+d+16\)
\(P\left(3\right)=27a+9b+3c+d+81\)
\(\Rightarrow100P\left(1\right)-198P\left(2\right)+100P\left(3\right)\)
\(=100\left(a+b+c+d+1\right)-198\left(8a+4b+2c+d+16\right)+100\left(27a+9b+3c+d+81\right)\)
\(=1216a+208b+4c+2d+5032=100.10-198.20+100.30=40\)
Ta lại có:
\(f\left(12\right)+f\left(-8\right)=12^4+12^3a+12^2b+12c+d+8^4-8^3a+8^2b-8c+d\)
\(=\left(1216a+208b+4c+2d+5032\right)+19800\)
\(=40+19800=19840\)
\(\Rightarrow P=\frac{19840}{10}+25=2009\)
Đặt \(G\left(x\right)=f\left(x\right)-10x\)\(\Leftrightarrow\hept{f\left(x\right)=G\left(x\right)+10x}\)và \(G\left(x\right)\)có bậc 4 có hệ số cao nhất là 1
Từ đề bài ta có: \(\hept{\begin{cases}G\left(1\right)=f\left(1\right)-10=0\\G\left(2\right)=f\left(2\right)-20=0\\G\left(3\right)=f\left(3\right)-30=0\end{cases}}\)\(\Rightarrow x=1;2;3\)là 3 nghiệm của\(G\left(x\right)\)
\(\Rightarrow G\left(x\right)\)có dạng \(G\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-k\right)\)
\(\Rightarrow\hept{\begin{cases}G\left(12\right)=\left(12-1\right)\left(12-2\right)\left(12-3\right)\left(12-k\right)=11880-990k\\G\left(-8\right)=\left(-8-1\right)\left(-8-2\right)\left(-8-3\right)\left(-8-k\right)=7920+990k\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(12\right)=G\left(12\right)+12\times10=12000-990k\\f\left(-8\right)=G\left(-8\right)+10\times\left(-8\right)=7840+990k\end{cases}}\)
\(\Rightarrow f\left(12\right)+f\left(-8\right)=12000-990k+7840+990k=19840\)
\(\Rightarrow P=\frac{19840}{10}+25=2009\)
👨❤️💋👨 👨❤️💋👨 👨❤️💋👨 👨❤️💋👨 👨❤️💋👨
cho đa thức f(x) = ax4 + bx3 + cx2 + dx + e với a,b,c,d,e ∈ Z và a ≠ 0. Biết rằng f(1) = 10; f(2) = 20; f(3) = 30. Tính giá trị của biểu thức A = \(\frac{f\left(12\right)+f\left(-8\right)}{10}+2019\)
Cho f(x) = \(x^4+ax^3+bx^2+cx+d\) biết \(f\left(1\right)=10;f\left(2\right)=20;f\left(3\right)=30\) tính f(-8)+f(12)
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2