Cho đa thức: \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\) ( với a, b, c, d là các số thực). Biết f(1)=10; f(2)=20; f(3)=30. Tính giá trị của biểu thức: A=f(8)+f(-4)
Cho f(x) = \(x^4+ax^3+bx^2+cx+d\) biết \(f\left(1\right)=10;f\left(2\right)=20;f\left(3\right)=30\) tính f(-8)+f(12)
1,cho f(x)=x4+ax3+bx2+cx+d Giả sử f(1)=10 f(2)=20 f(3)=30 Tính \(\frac{f\left(12\right)+f\left(-8\right)}{10}+15\)
Cho: \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\) thỏa mãn: f(1)=2014, f(2)=4028, f(3)=6042. Tính: f(-1)+f(5)
Cho đa thức f(x)=ax^2+bx+c thỏa mãn: f(3)>2, f(1)<-1, f(-1)>0. Xác định dấu của a
Xét đa thức bậc 3: f(x)=ax^3+bx^2+cx+d thỏa mãn:
f(x)-f(x-1)=x^2
Từ đó tính tổng A=1^2+2^2+....+n^2
Xác định đa thức \(f\left(x\right)=ax^2+bx+c\) biết rằng f(x) chia x và x+4 đều có số dư là 5 và f(-2)=-3
Đa thức f(x) =ax^3+bx^2+cx+d chia hết cho đa thức x-1 với a+b+c+d=0
Xác định a; b để:
a) Đa thức f(x)=\(x^4-3x^3+x^2+ax+b\)⋮cho đa thức g(x)=\(x^2-3x+2\)
b) Đa thức f(x)=\(2x^3+ax+b\) ⋮cho đa thức g(x)=x+1
c) Đa thức f(x)=\(2x^4+ax^2+x+b\) ⋮cho đa thức g(x)=x+2 và ⋮cho h(x)=\(x^2-1\)dư x
d) Đa thức f(x)=\(ax^3+bx^2+5x-50\)⋮cho đa thức g(x)=\(x^2+3x-10\)