bạn học định lí bezout chưa nếu có:
giả sử f(x) chia hết cho x-1 thì áp dụng hệ quả định lí bezout ta có số dư trong phép chia f(x) cho x-1 là
=> f(1) = a.13+b.12+c.1+d=0
<=> a+b+c+d=0
vậy với a+b+c+d=0 thì f(x)chia hết cho x-1
bạn học định lí bezout chưa nếu có:
giả sử f(x) chia hết cho x-1 thì áp dụng hệ quả định lí bezout ta có số dư trong phép chia f(x) cho x-1 là
=> f(1) = a.13+b.12+c.1+d=0
<=> a+b+c+d=0
vậy với a+b+c+d=0 thì f(x)chia hết cho x-1
Tìm các số a,b,c,d biết rằng đa thức P(x)=x4+ax3+bx2+cx+d chia hết cho đa thức (x\(-\)1)3
Cho đa thức: \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\) ( với a, b, c, d là các số thực). Biết f(1)=10; f(2)=20; f(3)=30. Tính giá trị của biểu thức: A=f(8)+f(-4)
Xác định các hệ số a, b, c sao cho đa thức: \(f\left(x\right)=2x^4+ax^2+bx+c\) chia hết cho đa thức x-2 và khi chia cho đa thức: \(x^2-1\) thì có dư là x
Xác định a; b để:
a) Đa thức f(x)=\(x^4-3x^3+x^2+ax+b\)⋮cho đa thức g(x)=\(x^2-3x+2\)
b) Đa thức f(x)=\(2x^3+ax+b\) ⋮cho đa thức g(x)=x+1
c) Đa thức f(x)=\(2x^4+ax^2+x+b\) ⋮cho đa thức g(x)=x+2 và ⋮cho h(x)=\(x^2-1\)dư x
d) Đa thức f(x)=\(ax^3+bx^2+5x-50\)⋮cho đa thức g(x)=\(x^2+3x-10\)
Cho đa thức f(x)=ax^3+bx^2+cx+d. Chứng minh rằng nếu f(x) nhận giá trị nguyên với mọi giá trị nguyên của x thì d; 2b; 6a là các số nguyên
Cho đa thức f(x)=x^3-3x^2+2. Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức x^2+ax+b
Cho đa thức f(x)=x^3-3x^2+2. Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức x^2+ax+b
Cho đa thức P(x)=6x^5+ax^4+bx^3+x^2+cx+450,biết đa thức chia hết cho các nhị thức (x-2);(x-3);(x-5).Hãy tìm giá trị của a,b,c và các nghiệm của đa thức
Các bạn giúp mk nha chỉ ghi ghi kết quả nhé.Thanks
tổng các giá trị của a và b khi đa thức P(x)=x^3+ax^2+bx+1 chia hết cho đa thức Q(x)=x^2+3x+1