tìm nghiệm NN của pt
\(\frac{2cos2x}{1-sin2x}\)=0
Tìm nghiệm của phương trình sin 2 x + 2 cos 2 x + 4 cos x − sin x − 1 = 0 .
A. x = ± π 3 + k π
B. x = ± π 3 + k 2 π
C. x = ± π 6 + k π
D. x = ± π 6 + k 2 π
Giải pt
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(sin2x-cos2x+3sinx-cosx-1=0\)
1.
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)
\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)
\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)
Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)
\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)
2.
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)
\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
1/ Tìm m để pt có nghiệm
|sinx+cosx| - sin2x=m
2/ Cho pt: 2cos2x+ sin2x.cosx + sinx.cos2x=m.(sinx + cosx)
A. Giải pt khi m=2
B. Tìm m để pt có nghiệm x thuộc [0; pi/2]
2cos2x-sin2x-sin2x=m+1 tìm m để phương trình có nghiệm \(\dfrac{\pi}{2}\)+kπ
giải pt: \(2cos2x+sin2x=0\)
\(pt\Leftrightarrow sin2x=-2cosx\\ \text{Mà }sin^22x+cos^22x=1\\ \Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{1}{5}\\cos2x=-\frac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{arccos\left(\frac{1}{5}\right)}{2}+m\pi\\x=\pm\frac{arccos\left(-\frac{1}{5}\right)}{2}+n\pi\end{matrix}\right.\)
Có 2 cách giải bài này:
Cách 1.
Nhận thấy \(cos2x=0\) không phải nghiệm, chia 2 vế cho \(cos2x\) ta được:
\(2+\frac{sin2x}{cos2x}=0\Leftrightarrow2+tan2x=0\Rightarrow tan2x=-2\)
Đặt \(tana=-2\Rightarrow tan2x=tana\)
\(\Rightarrow2x=a+k\pi\Rightarrow x=\frac{a}{2}+\frac{k\pi}{2}\)
(Hoặc sử dụng trực tiếp \(2x=arctan\left(-2\right)+k\pi\Rightarrow x=\frac{arctan\left(-2\right)}{2}+\frac{k\pi}{2}\))
Cách 2:
Với dạng \(a.sint+b.cost=c\) thì cách giải chung là chia 2 vế cho \(\sqrt{a^2+b^2}\) , khi đó 2 hệ số \(\frac{a}{\sqrt{a^2+b^2}}\) và \(\frac{b}{\sqrt{a^2+b^2}}\) có tổng bình phương bằng 1 nên có thể đặt thành sin, cos và sử dụng công thức lượng giác
Chia 2 vế cho \(\sqrt{5}\) ta được:
\(\frac{1}{\sqrt{5}}sin2x+\frac{2}{\sqrt{5}}cos2x=0\) (để ý rằng \(\left(\frac{1}{\sqrt{5}}\right)^2+\left(\frac{2}{\sqrt{5}}\right)^2=1\) là 1 tính chất cơ bản của sin, cos)
Đặt \(\left\{{}\begin{matrix}\frac{1}{\sqrt{5}}=cosa\\\frac{2}{\sqrt{5}}=sina\end{matrix}\right.\) ta được
\(sin2x.sina+cos2x.cosa=0\)
\(\Leftrightarrow sin\left(2x+a\right)=0\)
\(\Rightarrow2x+a=k\pi\Rightarrow x=-\frac{a}{2}+\frac{k\pi}{2}\)
Giải pt (2cos2x-1)(sin2x+cos2x)=1
P/t \(\Leftrightarrow2cos2x.sin2x-sin2x+2cos^22x-cos2x-1=0\)
\(\Leftrightarrow sin4x-sin2x+cos4x-cos2x=0\)
\(\Leftrightarrow2sinx.cos3x-2sin3x.sinx=0\)
\(\Leftrightarrow sinx\left(cos3x-sin3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(1\right)\\cos3x=sin3x\left(2\right)\end{matrix}\right.\)
(1) \(\Leftrightarrow x=k\pi\left(k\in Z\right)\)
(2) \(\Leftrightarrow sin3x-cos3x=0\) \(\Leftrightarrow\sqrt{2}sin\left(3x-\dfrac{\pi}{4}\right)=0\)
\(\Leftrightarrow3x-\dfrac{\pi}{4}=k\pi\Leftrightarrow x=\dfrac{\pi}{12}+\dfrac{k\pi}{3}\left(k\in Z\right)\)
Vậy ...
Tìm các giá trị của tham số m để phương trình y = 2 c o s 2 x + 2 1 + sin 2 x = m có nghiệm.
A. m ≤ 5
B. m ≥ 4
C. 4 ≤ m ≤ 5
D. m > 0
1. Pt: \(sin^22x-2cos^2x+\frac{3}{4}=0\) có nghiệm là?
2. Số nghiệm của pt: \(2cos2x+2cosx-\sqrt{2}=0\) thỏa đk: \(\frac{-\pi}{2}< x< \frac{5\pi}{2}\)?
3. Số nghiệm của pt: \(2tanx-2cotx-3=0\) trong khoảng: \(\left(\frac{-\pi}{2};\pi\right)\) là?
4. Nghiệm âm lớn nhất của pt: \(\frac{\sqrt{3}}{sin^2x}=3cotx+\sqrt{3}\) là?
5. Tổng các nghiệm của pt: \(\sqrt{3}tan^2x-\left(3+\sqrt{3}\right)tanx+3=0\) trong: \(\left(-2019\pi;2019\pi\right)\) thuộc khoảng nào trong các khoảng sau?
a. \(\left(-\infty;-3\right)\) b. \(\left(-3;5\right)\) c. (5;20) d. \(\left(20;+\infty\right)\)
6. Pt: 1 + sinx - cosx - sin2x = 0 có bao nhiêu nghiệm trên: \(\left[0;\frac{\pi}{2}\right]\)?
7. Tổng các nghiệm của pt: \(sinxcosx+\left|cosx+sinx\right|=1\) trên \(\left(0;2\pi\right)\) là?
1.
\(\Leftrightarrow1-cos^22x-2\left(\frac{1+cos2x}{2}\right)+\frac{3}{4}=0\)
\(\Leftrightarrow-cos^22x-cos2x+\frac{3}{4}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{1}{2}\\cos2x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=\pm\frac{\pi}{3}+k2\pi\)
\(\Leftrightarrow x=\pm\frac{\pi}{6}+k\pi\)
2.
\(2\left(2cos^2x-1\right)+2cosx-\sqrt{2}=0\)
\(\Leftrightarrow4cos^2x+2cosx-2-\sqrt{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{2}}{2}\\cosx=-\frac{1+\sqrt{2}}{2}< -1\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=-\frac{\pi}{4}+l2\pi\end{matrix}\right.\) mà \(-\frac{\pi}{2}< x< \frac{5\pi}{2}\Rightarrow\left\{{}\begin{matrix}-\frac{\pi}{2}< \frac{\pi}{4}+k2\pi< \frac{5\pi}{2}\\-\frac{\pi}{2}< -\frac{\pi}{4}+l2\pi< \frac{5\pi}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}k=0;1\\l=0;1\end{matrix}\right.\) \(\Rightarrow x=\left\{\frac{\pi}{4};\frac{9\pi}{4};-\frac{\pi}{4};\frac{7\pi}{4}\right\}\)
Có 4 nghiệm
3. ĐKXĐ: ...
\(2tanx-\frac{2}{tanx}-3=0\)
\(\Leftrightarrow2tan^2x-3tanx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\frac{1}{2}\\tanx=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-\frac{1}{2}\right)+k\pi\\x=arctan\left(2\right)+k\pi\end{matrix}\right.\)
Có 3 nghiệm trong khoảng đã cho \(x=arctan\left(-\frac{1}{2}\right);x=arctan\left(-\frac{1}{2}\right)+\pi;x=arctan\left(2\right)\)
4. ĐKXĐ: ...
\(\Leftrightarrow\sqrt{3}\left(1+cot^2x\right)=3cotx+\sqrt{3}\)
\(\Leftrightarrow cot^2x-\sqrt{3}cotx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cotx=0\\cotx=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)
Nghiệm âm lớn nhất của pt là \(x=-\frac{\pi}{2}\)
5. ĐKXĐ; ...
\(\Leftrightarrow tan^2x-\left(1+\sqrt{3}\right)tanx+\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\sqrt{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+l\pi\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-2019\pi< \frac{\pi}{4}+k\pi< 2019\pi\\-2019\pi< \frac{\pi}{3}+l\pi< 2019\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2019\le k\le2018\\-2019\le l\le2018\end{matrix}\right.\)
Tổng các nghiệm: \(2.\left(-2019\pi\right)+4038\left(\frac{\pi}{3}+\frac{\pi}{4}\right)=-\frac{3365\pi}{2}< -3\)
Đáp án A đúng
giải các pt
a) \(tanx-\frac{\sqrt{2}}{cosx}=1\)
b) \(\frac{2sinx-1}{cos4x}+\frac{2sinx-1}{sin4x-1}=0\)
c) \(sin\left(x+\frac{\pi}{4}\right)-cos\left(x-\frac{\pi}{4}\right)=1\)
d) \(\frac{sin2x-2cos2x-5}{2sin2x-cos2x-6}=0\)
a/ ĐKXĐ:...
\(\Leftrightarrow\frac{sinx}{cosx}-\frac{\sqrt{2}}{cosx}=1\)
\(\Leftrightarrow sinx-\sqrt{2}=cosx\)
\(\Leftrightarrow sinx-cosx=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{3\pi}{4}+k2\pi\)
b/
ĐKXĐ: ...
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x-1\right)+cos4x\left(2sinx-1\right)=0\)
\(\Leftrightarrow2sinx.sin4x-2sinx-sin4x+1+2sinx.cos4x-cos4x=0\)
\(\Leftrightarrow2sinx\left(sin4x+cos4x\right)-\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin4x+cos4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin\left(4x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\4x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\4x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\frac{k\pi}{2}\\x=\frac{\pi}{8}+\frac{k\pi}{2}\left(l\right)\end{matrix}\right.\)
c/
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow sinx=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow sin2x-2cos2x-5=2sin2x-cos2x-6\)
\(\Leftrightarrow sin2x+cos2x=1\)
\(\Leftrightarrow\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
c/
Hình như câu này đề sai
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)-\sqrt{2}cos\left(x-\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sinx+cosx-\left(sinx+cosx\right)=\sqrt{2}\)
\(\Leftrightarrow0=\sqrt{2}\)
Pt vô nghiệm
d/ Hình như câu này đề cũng sai
\(\Leftrightarrow sin2x-2cos2x-5=0\)
\(\Leftrightarrow\frac{1}{\sqrt{5}}sin2x-\frac{2}{\sqrt{5}}cos2x=\sqrt{5}\)
\(\Leftrightarrow sin\left(2x-a\right)=\sqrt{5}\) (với \(sina=\frac{2}{\sqrt{5}};cosa=\frac{1}{\sqrt{5}}\))
Pt vô nghiệm do \(\sqrt{5}>1\)