tìm giá trị nhỏ nhất của P = \(x-\sqrt{x}\) đkxđ x > 0
Cho: \(P=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) (ĐKXĐ: x>0; \(x\ne1\)). Tìm giá trị nhỏ nhất của biểu thức: \(\dfrac{7}{P}\)
\(\dfrac{7}{P}\) chỉ có GTLN chứ ko có GTNN
Cho: \(A=\dfrac{3\sqrt{x}}{x+\sqrt{x}+1}\) (ĐKXĐ: x>0; \(x\ne1\)). Tìm x để A đạt giá trị nhỏ nhất
Với \(x>0;x\ne1\) thì biểu thức này ko tồn tại cả GTNN lẫn GTLN
tìm giá trị lớn nhất của P= \(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)(Đkxđ: x>0; x≠1) với 0<x≤3
giúp mik với ạ :((
\(P=\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}\)
Vì \(x\le3\Rightarrow\dfrac{2}{\sqrt{x}}\ge\dfrac{2}{\sqrt{3}}\)\(\Leftrightarrow-\dfrac{2}{\sqrt{x}}\le-\dfrac{2}{\sqrt{3}}\)\(\Leftrightarrow1-\dfrac{2}{\sqrt{3}}\le1-\dfrac{2}{\sqrt{3}}\)
\(\Rightarrow\)\(P\le\dfrac{3-2\sqrt{3}}{3}\)
Dấu = xra khi x=3
Vậy \(P_{max}=\dfrac{3-2\sqrt{3}}{3}\)
A = \(\dfrac{3\sqrt{x}}{\sqrt{x}-6}\) với đkxđ : \(x\ge0\); x#1;x#36
B =\(\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}\) với đkxđ : \(x\ge0\); x#1;x#36
Đặt T = \(\sqrt{AB}\). Tìm giá trị nhỏ nhất của biểu thức T
\(T=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-6\right)}{\sqrt{x}-1}}\\ =\sqrt{\dfrac{3\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3x}{\sqrt{x}-1}}\\ =\sqrt{\dfrac{3\left(x-1\right)+3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}+1\right)+\dfrac{3}{\sqrt{x}-1}}\\ =\sqrt{3\left(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\right)+6}\)
Áp dụng bất đẳng thức Cosi ta có:
\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\)
\(\Rightarrow T\ge\sqrt{3\cdot2+6}=2\sqrt{3}\)
Dấu = xảy ra khi x=4
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Bài 1:
Ta có: \(D=\sqrt{16x^4}-2x^2+1\)
\(=4x^2-2x^2+1\)
\(=2x^2+1\)
\(P=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
a)Tìm ĐKXĐ của P
b)Rút gọn P
c) Tìm giá trị nhỏ nhất của P
\(P=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\left(đkxđ\Leftrightarrow x\ge0\right).\)
\(=\frac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+1-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)\)
\(=x+\sqrt{x}-2\sqrt{x}-1=x-\sqrt{x}-1\)
\(P=x-\sqrt{x}-1=\sqrt{x}^2-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-1\)
\(=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{5}{4}\)
\(\Rightarrow P_{min}=-\frac{5}{4}\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)
Cho P = \(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a) Tìm ĐKXĐ, rút gọn P
b) Tìm giá trị nhỏ nhất của P
c) Tìm x nguyên để biểu thức Q = \(\frac{2\sqrt{x}}{P}\) nhận giá trị nguyên
Cho P =\(\frac{x\sqrt{x}+5\sqrt{x}-12}{x-\sqrt{x}-6}-\frac {2(\sqrt{x}-3)}{\sqrt{x}+2}\)\(+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a)Tìm ĐKXĐ và rút gọn P
b) Tịm giá trị nhỏ nhất của P
a) ĐKXĐ: \(x\ne9\)
\(P=\frac{x\sqrt{x}+5\sqrt{x}-12-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{x\sqrt{x}+5\sqrt{x}-12-2x+12\sqrt{x}-18-x-5\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{x\sqrt{x}-3x+12\sqrt{x}-36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\left(\sqrt{x}-3\right)\left(x+12\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{x+12}{\sqrt{x}+2}\)
b) Ta có: \(P=\frac{x+12}{\sqrt{x}+2}=\frac{x-4+16}{\sqrt{x}+2}=\sqrt{x}-2+\frac{16}{\sqrt{x}+2}\)
\(=\left(\sqrt{x}+2\right)+\frac{16}{\sqrt{x}+2}-4\)
\(\ge2\sqrt{\left(\sqrt{x}+2\right).\frac{16}{\sqrt{x}+2}}-4=4\)
P = 4 thì \(\left(\sqrt{x}+2\right)^2=16\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
Vậy GTNN của P là 4 khi x = 4.
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)
a, tìm ĐKXĐ, rút gọn A
b, tìm giá trị nhỏ nhất
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)ĐKXĐ : \(x>1\)
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)
\(A=\frac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)\)
\(A=\frac{x+2}{\sqrt{x}}\)
\(a)\)\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}:\frac{1}{\sqrt{x}-1}\right)+\left(\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{1}{\sqrt{x}-1}\right)\)
\(A=\sqrt{x}+\frac{2}{\sqrt{x}}\)
\(b)\) Áp dụng Cosi với hai số dương ta có :
\(A=\sqrt{x}+\frac{2}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{2}{\sqrt{x}}}=2\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\sqrt{x}=\frac{2}{\sqrt{x}}\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTNN của \(A\) là \(2\sqrt{2}\) khi \(x=2\)
Chúc bạn học tốt ~
PS : mới lớp 8 ko chắc nhé :v
Theo câu a) thì \(A=\frac{x+2}{\sqrt{x}}\)
Áp dụng BĐT AM-GM cho 2 số không âm\(x+2\ge2\sqrt{2x}\)
\(\Rightarrow A\ge\frac{2\sqrt{2x}}{\sqrt{x}}=2\sqrt{2}\). Vậy Min \(A=2\sqrt{2}\). Dấu "=" xảy ra <=> \(x=2\).