Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Trần Đức Huy
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 3 2022 lúc 14:37

\(tana-5cota+4=0\Rightarrow tana-\dfrac{5}{tana}+4=0\)

\(\Rightarrow tan^2a+4tana-5=0\Rightarrow\left[{}\begin{matrix}tana=1\\tana=-5\end{matrix}\right.\)

\(A=\dfrac{4sina+2cosa}{3sina-cosa}=\dfrac{\dfrac{4sina}{cosa}+\dfrac{2cosa}{cosa}}{\dfrac{3sina}{cosa}-\dfrac{cosa}{cosa}}=\dfrac{4tana+2}{3tana-1}=\left[{}\begin{matrix}3\\\dfrac{9}{8}\end{matrix}\right.\)

Nguyễn Thùy Dương
Xem chi tiết
Akai Haruma
1 tháng 10 2018 lúc 23:28

a)

\(\sin ^4a-\cos ^4a+1=(\sin ^2a-\cos ^2a)(\sin ^2a+\cos^2a)+1\)

\(=(\sin ^2a-\cos ^2a).1+1=\sin ^2a-\cos ^2a+\sin ^2a+\cos ^2a\)

\(=2\sin ^2a\)

b) \(\sin ^2a+2\cos ^2a-1=(\sin ^2a+\cos^2a)+\cos ^2a-1\)

\(=1+\cos ^2a-1=\cos ^2a\)

\(\Rightarrow \frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}=\sin ^2a\)

c)

\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)

\(=\frac{1}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\frac{1}{\cos ^2a}-1\)

\(=\frac{1-\cos ^2a}{\cos ^2a}=\frac{\sin ^2a}{\cos ^2a}=\tan ^2a\)

Akai Haruma
1 tháng 10 2018 lúc 23:37

d)

\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}\) \(=\frac{\sin ^2a(1-\frac{1}{\cos ^2a})}{\cos ^2a(1-\frac{1}{\sin ^2a})}\)

\(=\frac{\sin ^2a.\frac{\cos ^2a-1}{\cos ^2a}}{\cos ^2a.\frac{\sin ^2a-1}{\sin ^2a}}\) \(=\frac{\sin ^2a.\frac{-\sin ^2a}{\cos ^2a}}{\cos ^2a.\frac{-\cos ^2a}{\sin ^2a}}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)

f)

\(\frac{(\sin a+\cos a)^2-1}{\cot a-\sin a\cos a}=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\frac{\cos a}{\sin a}-\sin a\cos a}\)

\(=\sin a.\frac{1+2\sin a\cos a-1}{\cos a-\cos a\sin ^2a}\)

\(=\sin a. \frac{2\sin a\cos a}{\cos a(1-\sin ^2a)}=\sin a. \frac{2\sin a\cos a}{\cos a. \cos^2 a}=\frac{2\sin ^2a}{\cos ^2a}=2\tan ^2a\)

Akai Haruma
1 tháng 10 2018 lúc 23:38

e)

\((1+\cot a)\sin ^3a+(1+\tan a)\cos ^3a\)

\(=(\sin ^3a+\cos ^3a)+\cot a.\sin ^3a+\tan a.\cos^3a\)

\(=(\sin a+\cos a)(\sin ^2a-\sin a\cos a+\cos ^2a)+\frac{\cos a}{\sin a}.\sin ^3a+\frac{\sin a}{\cos a}.\cos ^3a\)

\(=(\sin a+\cos a)(1-\sin a\cos a)+\cos a\sin ^2a+\sin a\cos ^2a\)

\(=\sin a+\cos a-\sin a\cos a(\sin a+\cos a)+\cos a\sin a(\sin a+\cos a)\)

\(=\sin a+\cos a\)

Nguyễn Thị Yến Vy
Xem chi tiết
Bui Huyen
13 tháng 8 2019 lúc 21:06

\(\sin\alpha+\cos\alpha=m\Leftrightarrow\left(\sin\alpha+\cos\alpha\right)^2=m^2\)

\(\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha=m^2\)

\(\Leftrightarrow2\sin\alpha\cdot\cos\alpha=m^2-1\)

\(\Leftrightarrow\sin\alpha\cdot\cos\alpha=\frac{m^2-1}{2}\)

Nguyễn Sinh Hùng
Xem chi tiết
Akai Haruma
26 tháng 7 2021 lúc 14:47

Lời giải:
a.

$\tan a+\cot a=2\Leftrightarrow \tan a+\frac{1}{\tan a}=2$

$\Leftrightarrow \frac{\tan ^2a+1}{\tan a}=2$

$\Leftrightarrow \tan ^2a-2\tan a+1=0$

$\Leftrightarrow (\tan a-1)^2=0\Rightarrow \tan a=1$

$\cot a=\frac{1}{\tan a}=1$

$1=\tan a=\frac{\cos a}{\sin a}\Rightarrow \cos a=\sin a$

Mà $\cos ^2a+\sin ^2a=1$

$\Rightarrow \cos a=\sin a=\pm \frac{1}{\sqrt{2}}$

b.

Vì $\sin a=\cos a=\pm \frac{1}{\sqrt{2}}$

$\Rightarrow \sin a\cos a=\frac{1}{2}$

$E=\frac{\sin a.\cos a}{\tan ^2a+\cot ^2a}=\frac{\frac{1}{2}}{1+1}=\frac{1}{4}$

Thầy Tùng Dương
Xem chi tiết
Cao Thị Kim Ngân
18 tháng 7 2022 lúc 10:42

a) Ta có A=\dfrac{\tan \alpha+3 \dfrac{1}{\tan \alpha}}{\tan \alpha+\dfrac{1}{\tan \alpha}}=\dfrac{\tan ^{2} \alpha+3}{\tan ^{2} \alpha+1}=\dfrac{\dfrac{1}{\cos ^{2} \alpha}+2}{\dfrac{1}{\cos ^{2} \alpha}}=1+2 \cos ^{2} \alpha Suy ra A=1+2 \cdot \dfrac{9}{16}=\dfrac{17}{8}.

b) B=\dfrac{\dfrac{\sin \alpha}{\cos ^{3} \alpha}-\dfrac{\cos \alpha}{\cos ^{3} \alpha}}{\dfrac{\sin ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{3 \cos ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{2 \sin \alpha}{\cos ^{3} \alpha}}=\dfrac{\tan \alpha\left(\tan ^{2} \alpha+1\right)-\left(\tan ^{2} \alpha+1\right)}{\tan ^{3} \alpha+3+2 \tan \alpha\left(\tan ^{2} \alpha+1\right)}.

Suy ra B=\dfrac{\sqrt{2}(2+1)-(2+1)}{2 \sqrt{2}+3+2 \sqrt{2}(2+1)}=\dfrac{3(\sqrt{2}-1)}{3+8 \sqrt{2}}.

Nhi Hoàng
Xem chi tiết
Nguyễn Đức Trí
12 tháng 9 2023 lúc 21:57

1) \(cot\alpha=\sqrt[]{5}\Rightarrow tan\alpha=\dfrac{1}{\sqrt[]{5}}\)

\(C=sin^2\alpha-sin\alpha.cos\alpha+cos^2\alpha\)

\(\Leftrightarrow C=\dfrac{1}{cos^2\alpha}\left(tan^2\alpha-tan\alpha+1\right)\)

\(\Leftrightarrow C=\left(1+tan^2\alpha\right)\left(tan^2\alpha-tan\alpha+1\right)\)

\(\Leftrightarrow C=\left(1+\dfrac{1}{5}\right)\left(\dfrac{1}{5}-\dfrac{1}{\sqrt[]{5}}+1\right)\)

\(\Leftrightarrow C=\dfrac{6}{5}\left(\dfrac{6}{5}-\dfrac{\sqrt[]{5}}{5}\right)=\dfrac{6}{25}\left(6-\sqrt[]{5}\right)\)

Nguyễn Lê Phước Thịnh
12 tháng 9 2023 lúc 21:33

1: \(cota=\sqrt{5}\)

=>\(cosa=\sqrt{5}\cdot sina\)

\(1+cot^2a=\dfrac{1}{sin^2a}\)

=>\(\dfrac{1}{sin^2a}=1+5=6\)

=>\(sin^2a=\dfrac{1}{6}\)

\(C=sin^2a-sina\cdot\sqrt{5}\cdot sina+\left(\sqrt{5}\cdot sina\right)^2\)

\(=sin^2a\left(1-\sqrt{5}+5\right)=\dfrac{1}{6}\cdot\left(6-\sqrt{5}\right)\)

2: tan a=3

=>sin a=3*cosa 

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=1+9=10\)
=>\(cos^2a=\dfrac{1}{10}\)

\(B=\dfrac{3\cdot cosa-cosa}{27\cdot cos^3a+3\cdot cos^3a+2\cdot3\cdot cosa}\)

\(=\dfrac{2\cdot cosa}{30cos^3a+6cosa}=\dfrac{2}{30cos^2a+6}\)

\(=\dfrac{2}{3+6}=\dfrac{2}{9}\)

Nguyễn Sinh Hùng
Xem chi tiết
Lan Once
Xem chi tiết
Nguyễn Đức Trí
15 tháng 9 2023 lúc 19:26

\(sin\alpha=\dfrac{3}{4}\)

\(sin^2\alpha+cos^2\alpha=1\)

\(\Leftrightarrow cos^2\alpha=1-sin^2\alpha\)

\(\Leftrightarrow cos^2\alpha=1-\dfrac{9}{16}=\dfrac{7}{16}\)

\(\Leftrightarrow cos\alpha=-\dfrac{\sqrt[]{7}}{4}\left(\dfrac{\pi}{2}< \alpha< \pi\right)\)

\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{3}{4}}{-\dfrac{\sqrt[]{7}}{4}}=-\dfrac{3}{\sqrt[]{7}}=-\dfrac{3\sqrt[]{7}}{7}\)

\(\Rightarrow cot\alpha=\dfrac{1}{tan\alpha}=-\dfrac{\sqrt[]{7}}{3}\)

Nguyễn Lê Phước Thịnh
15 tháng 9 2023 lúc 19:27

loading...