\(TínhM=\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{3}{n-3}+\frac{2}{n-2}+\frac{1}{n-1}\)
(\(\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+....+\frac{2}{n-2}+\frac{1}{n-1}\)):\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{n}\)
Viết chương trình cho phép nhập số tự nhiên N từ bàn phím (với 0<n<=12) rồi thực hiện:
a: Tìm N! = 1.2.3...N
b: tìm S = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{N!}\)
c: T = \(1+\frac{2}{2^2}+\frac{3}{3^2}+\frac{4}{4^2}+...+\frac{1}{n^2}\)
d: S = \(1+\frac{1}{2^2}+\frac{1}{3^3}+\frac{1}{4^4}+...+\frac{1}{n^n}\)
e: \(S_n=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+...+\frac{n}{n+1}\)
f: S = \(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}\)
b)
program hotrotinhoc;
var s: real;
i,n: byte;
function t(x: byte): longint;
var j: byte;
t1: longint;
begin
t1:=1;
for j:=1 to x do
t1:=t1*j;
t1:=t;
end;
begin
readln(n);
s:=0;
for i:=1 to n do
s:=s+1/t(i);
write(s:1:2);
readln
end.
c) Đề em ghi sai rồi thế này với đúng :
\(T=1+\frac{2}{2^2}+\frac{3}{3^2}+\frac{4}{4^2}+...+\frac{n}{n^2}\)
program hotrotinhoc;
var t: real;
n,i: byte;
begin
readln(n);
t:=0;
for i:=1 to n do
t:=t+i/(i*i);
write(t:1:2);
readln
end.
a)
uses crt;
var N,S,i : integer;
begin clrscr;
S:=1;
for i:= 1 to N do S:=S*i;
writeln('N!=',S);
readln
end.
Các cái kia tương tự :))
d)
program hotrotinhoc;
var i,n: byte;
s: real;
function mu(x: byte): longint;
var j : byte;
k: longint;
begin
k:=1;
for j:=1 to x do
k:=k*x;
k:=mu;
end;
begin
readln(n);
s:=0;
for i:=1 to n do
s:=s+1/mu(i);
write(s:1:2);
readln
end.
e)
program hotrotinhoc;
var s: real;
i,n: byte;
begin
readln(n);
s:=0;
for i:=1 to n do
s:=s+i/(i+1);
write(s:1:2);
readln
end.
Bài 1: Chứng minh rằng: \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2: Cho \(n\in N;n>1\). Chứng minh rằng: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}\notin N\)
Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...
Rút gọn biểu thức:
\(B=\left(\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{2}{n-2}+\frac{1}{n-1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\right)\) + \(\frac{1}{n}\) )
sxdhjkhafn gwudahsjc nbsdluihjckmdln933sdvfdzfs
THU GỌN BIỂU THỨC SAU
\(\left(\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{2}{n-2}+\frac{1}{n-1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\right)\)
THU GỌN BIỂU THỨC SAU
\(\left(\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{2}{n-2}+\frac{1}{n-1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\right)\)
1, CMR: \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\ge\frac{n}{n+1}\)
2, CMR: \(2\left(\sqrt{n-1}-1\right)< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}\)
3, CMR: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
CMR:
a, \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>\frac{n}{n+1}\)
b, \(2\left(\sqrt{n-1}-1\right)< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n-1}\)
c, \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Mấy bài này đã có người làm rồi nhé bạn vào câu hỏi tương tự mà xem.
CMR : với mọi số nguyên dương n thì :
a, \(\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{4}\)
b, \(\frac{1}{1^2+2^2}+\frac{1}{2^2+3^2}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2}\)
c, \(\frac{1}{1^4+1^2+1}+\frac{1}{2^4+2^2+1}+\frac{3}{3^4+3^2+1}+...+\frac{n}{n^4+n^2+1}< \frac{1}{2}\)