Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Lý
Xem chi tiết
Nguyễn Thị Lý
15 tháng 9 2017 lúc 5:59

giúp tớ với nhé!

Hoàng Thị Hà Linh
8 tháng 2 2021 lúc 14:47

Bài 5:

Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825

=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683

=> abc chia 1987 dư 304. Mà abc nhỏ nhất

=> abc = 304
Vậy số tự nhiên là 11111304

Khách vãng lai đã xóa
Phạm Thọ Giang
Xem chi tiết
Ngọc Tâm Võ
15 tháng 8 2017 lúc 14:48

Câu 1: 90

Câu 2: 349912

Câu 3: 24

Câu 4: 90804

Câu 5: 19

Câu 6: 450

Câu 7: 250000

Câu 8: 15

Câu 9: 11110

Câu 10: 910010

Trà Vinh Lê Thị
15 tháng 8 2017 lúc 14:50

1. 90
2. 349912
3. 24
4. 90804
5. 19
6. 450
7.  250000
8. Phân tích được: 100 + 10a + b + 36 = 100a +10b + 1
 Chuyển vế ta được : 90a + 9b = 135
             9 ab = 135
             ab = 15 
9. 9876 + 1023 = 10899
10. ab4c + 176d = ef900
Ta thấy c+d=0 mà 4+6 =0 nên c+d không nhớ. suy ra c=d =0
Thay vào : ab40 +1760 = ef900 
4+6 =0 nhớ 1 suy ra b=1
Thay vào : a140 + 1760 = ef900 
Ta thấy a+1 + ef mà chỉ có 9+1 mới bằng 2 chữ số trong trường hợp này nên a=9
Ta thay vào được : 9140 + 1760 = 10900
Vậy abcdef = 910010

Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
2 tháng 8 2023 lúc 8:11

\(\overline{abcd}⋮9\)  (d là số nguyên tố)

\(\Rightarrow d\in\left\{3;5;7\right\}\)

mà \(\overline{abcd}\) là số chính phương

\(\Rightarrow d\in\left\{5\right\}\Rightarrow c\in\left\{2\right\}\)

\(\Rightarrow\overline{ab}\in\left\{12;20;30;56;72\right\}\)

mà \(\left\{{}\begin{matrix}a+b+c+d⋮9\\c+d=2+5=7\end{matrix}\right.\)

\(\Rightarrow\overline{ab}\in\left\{20;56\right\}\)

\(\Rightarrow\overline{abcd}\in\left\{2025;5625\right\}\)

Trần Đình Thiên
2 tháng 8 2023 lúc 7:46


 Số chính phương có bốn chữ số. Số chính phương có bốn chữ số có thể là 1000, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000.


- Nếu tổng các chữ số là 9, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 18, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 27, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 36, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 45, thì số abcd
chia hết cho 9.

 

Ví dụ: Giả sử ta tìm số tự nhiên có bốn chữ số abcd
, biết rằng nó là một số chính phương, số abcd
chia hết cho 9 và d là một số nguyên tố.

- Ta tìm số chính phương có bốn chữ số: 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000.

- Ta kiểm tra số abcd
chia hết cho 9. Ví dụ, nếu ta chọn số 2025, tổng các chữ số là 2 + 0 + 2 + 5 = 9, nên số 2025 chia hết cho 9.

- Ta kiểm tra d có phải là số nguyên tố. Ví dụ, nếu ta chọn số 2025, d = 5 không chia hết cho bất kỳ số nguyên tố nào từ 2 đến căn bậc hai của 5, nên d = 5 là số nguyên tố.

- Kết hợp các kết quả từ các bước trên, ta có số tự nhiên thỏa mãn yêu cầu đề bài là 2025.

A = \(\overline{abcd}\) 

+ vì A là một số chính phương nên \(d\) = 0; 1; 4; 5;6; 9

+ Vì \(d\) là số nguyên  tố nên \(d\) = 5

+ Vì A là số chính phương mà số chính phương có tận cùng bằng 5 thì chữ số hàng chục là: 2 ⇒ c =2

+ Vì A ⋮ 9 ⇒ a + b + c + d \(⋮\) 9 

⇔ a + b + 2 + 5 ⋮ 9 ⇒ a + b = 2; 11

a + b  = 2⇒ (a; b) =(1; 1); (2; 0) ⇒ \(\overline{abcd}\) = 1125; 2025

a + b = 11 ⇒(a;b) =(2;9); (3;8); (4; 7); (5; 6); (6;5); (7;4); (8; 3); (9;2)

⇒ \(\overline{abcd}\) = 2925; 3825; 4725; 5625; 6525; 7425; 8325; 9225

 Vì 2025 = 452; 5625 = 752 vậy số thỏa mãn đề bài là: 2025 và 5625

Hoàng Mai Lê
Xem chi tiết
Nguyễn Huy Tú
21 tháng 9 2016 lúc 20:29

Giải:

Ta có:

\(\overline{1abc}.2=\overline{abc8}\)

\(\Rightarrow\left(1000+\overline{abc}\right).2=10.\overline{abc}+8\)

\(\Rightarrow2000+2.\overline{abc}=10.\overline{abc}+8\)

\(\Rightarrow10.\overline{abc}-2.\overline{abc}=2000-8\)

\(\Rightarrow8.\overline{abc}=1992\)

\(\Rightarrow\overline{abc}=249\)

\(\Rightarrow a=2,b=4,c=9\)

Vậy a = 2, b = 4, c = 9

soyeon_Tiểubàng giải
21 tháng 9 2016 lúc 20:21

Ta có:

1abc x 2 = abc8

=> (1000 + abc) x 2 = abc0 + 8

=> 2000 + abc x 2 = abc x 10 + 8

=> 2000 - 8 = abc x 10 - abc x 2

=> 1992 = abc x 8

=> abc = 1992 : 8

=> abc = 249

Vậy a = 2; b = 4; c = 9

Nguyễn Hoàng Minh
Xem chi tiết
Collest Bacon
23 tháng 10 2021 lúc 11:15

Anh tham khảo ạ :

undefined

Lê Hoàng Danh
25 tháng 11 2021 lúc 22:42

Trần Đại Nghĩa
Xem chi tiết
Lê Nhật Khôi
1 tháng 7 2019 lúc 15:42

Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\)  (dấu bằng xảy ra khi và chỉ khi x=y)

Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y

Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010

Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y

Nên: \(x=y=987\)

Max x+y=\(\sqrt{4\cdot987^2}=1974\)

Không viết đúng không

:v

Trần Đại Nghĩa
1 tháng 7 2019 lúc 15:46

Mình xem đáp án là 1328 với lại mình gõ nhầm;

abcdef là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .

Lê Nhật Khôi
1 tháng 7 2019 lúc 16:29

Đặt: \(\hept{\begin{cases}\overline{abc}=x\\\overline{def}=y\end{cases}}\)

Có: \(\overline{xy}-\overline{yx}=10\left(x-y\right)-\left(x-y\right)=9\left(x-y\right)\)

Vì \(9\left(x-y\right)⋮2010\)

nên: \(\left(x-y\right)⋮670\)

Tức: \(\left(\overline{abc}-\overline{def}\right)⋮670\)

Do đó: \(\overline{abc}-\overline{def}\in BCNN\left(670\right)=\left\{670;1340;...\right\}\)

Vì x,y là số có 3 chữ số nên có: \(\overline{abc}-\overline{def}=670\)

Tức có: \(\overline{abc}>771\&x>y\)

Có: \(100\left(a-d\right)+10\left(b-e\right)-600-70=0\)

\(\Leftrightarrow100\left(a-d-6\right)+10\left(b-e-7\right)=0\)

\(\hept{\begin{cases}a-d=6\\b-e=7\\c=f\end{cases}\left(a>6;b\ge7\right)}\)

Giả sử: a=9 thì d=3 thì tổng a và d lớn nhất nên chọn

Từ đó: b=8 và e=1 thì tổng b và e lớn nhất

Suy ra: c=f=7

Vì thế: \(\hept{\begin{cases}abc=987\\def=317\end{cases}\Rightarrow}abc+def=1304\)

Max là 1304

Làm bừa xem có đúng k nhỉ

Huy Hoàng
Xem chi tiết
Riio Riyuko
17 tháng 5 2018 lúc 22:04

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Giải sử S là số chính phương 

=> 3(a + b + c )  \(⋮\)  37 

   Vì 0 < (a + b + c ) \(\le27\)

=> Điều trên là vô lý 

Vậy S không là số chính phương

Trần Quốc Việt
18 tháng 5 2018 lúc 19:16

2/            Gọi số đó là abc

Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)

\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)

Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)

dream XD
Xem chi tiết
Nguyễn Thị Kiều Loan
Xem chi tiết
lê văn hải
27 tháng 9 2017 lúc 12:01

  abc=198  nha bạn