Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
07-7-11-Nguyễn -Tuấn Dươ...
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2022 lúc 22:32

a: Xét ΔABC cân tại A có AH là đường cao

nên H là trung điểm của BC

hay HB=HC

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 5 2018 lúc 7:24

Δ A B C  cân tại A (gt)  mà AM là trung tuyến nên AM cũng là đường cao của tam giác đó.

Vì AM  là trung tuyến của  Δ A B C nên M là trung điểm của BC

⇒ B M = B C 2 = 24 : 2 = 12 c m

Nam Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 2 2021 lúc 9:23

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(gt)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(hai cạnh tương ứng)

b) Ta có: HB=HC(cmt)

mà HB+HC=BC(H nằm giữa B và C)

nên \(HB=HC=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)

hay AH=3(cm)

Vậy: AH=3cm

c) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Ta có: ΔABC cân tại A(cmt)

nên \(\widehat{B}=\widehat{C}\)(hai góc ở đáy)

Xét ΔDBH vuông tại D và ΔECH vuông tại E có

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(cmt)Do đó: ΔDBH=ΔECH(cạnh huyền-góc nhọn)

⇒HD=HE(Hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

Yoona SNSD
Xem chi tiết
Vũ Như Mai
23 tháng 1 2017 lúc 17:35

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

Vũ Như Mai
23 tháng 1 2017 lúc 17:38

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

Nguyễn Hồng Nhung
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2021 lúc 20:44

a) Ta có: ΔABC cân tại A(gt)

mà AI là đường trung tuyến ứng với cạnh đáy BC(gt)

nên AI là đường cao ứng với cạnh BC(Định lí tam giác cân)

hay AI\(\perp\)BC

Ta có: I là trung điểm của BC(gt)

nên \(BI=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABI vuông tại I, ta được:

\(AI^2+BI^2=AB^2\)

\(\Leftrightarrow AI^2=AB^2-BI^2=5^2-4^2=9\)

hay AI=3(cm)

Vậy: AI=3cm

Mie Yeudoi
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2021 lúc 9:51

Bài 3: 

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

b) Ta có: BH=CH(cmt)

mà BH+CH=BC(H nằm giữa B và C)

nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)

hay AH=3(cm)

Vậy: AH=3(cm)

c) Xét ΔDBH vuông tại D và ΔECH vuông tại E có

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔDBH=ΔECH(cạnh huyền-góc nhọn)

Suy ra: HD=HE(hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

Mie Yeudoi
27 tháng 6 2021 lúc 9:48

vẽ hình giúp mk nha

Nguyễn Lê Phước Thịnh
27 tháng 6 2021 lúc 9:56

Bài 4: 
a) Xét ΔAMB và ΔAMC có 

AM chung

MB=MC(M là trung điểm của BC)

AB=AC(ΔBAC cân tại A)

Do đó: ΔAMB=ΔAMC(c-c-c)

Suy ra: \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

hay AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

b) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM\(\perp\)BC

c) Ta có: BM=CM(M là trung điểm của BC)

nên \(BM=CM=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AM^2=AB^2-BM^2\)

\(\Leftrightarrow AM^2=5^2-3^2=16\)

hay AM=4(cm)

Vậy: BM=3cm; AM=4cm

Đặng Quốc Đạt
Xem chi tiết
Nguyễn Ngọc Huy Toàn
14 tháng 2 2022 lúc 15:49

bạn đăng từng bài nhé

Nguyễn Lê Phước Thịnh
14 tháng 2 2022 lúc 19:43

Bài 3:

\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)

BC=13cm

=>\(AC=3\sqrt{13}\left(cm\right)\)

Dr. Lemon
Xem chi tiết
Dr. Lemon
16 tháng 2 2021 lúc 11:07

Cho mk xin hình luôn nhé 

Nguyễn Ngọc Lộc
16 tháng 2 2021 lúc 11:18

- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AC^2+5^2=13^2\)

\(\Rightarrow AC=12\left(cm\right)\)

- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)

=> Hai tam giác trên đồng dạng .

=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)

=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)

=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)

- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)

Vậy ...

Nguyễn Lê Phước Thịnh
16 tháng 2 2021 lúc 11:33

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=13^2-5^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot13=5\cdot12\)

\(\Leftrightarrow AH\cdot13=60\)

hay \(AH=\dfrac{60}{13}cm\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=BH^2+AH^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=5^2-\left(\dfrac{60}{13}\right)^2=\dfrac{625}{169}\)

hay \(BH=\dfrac{25}{13}cm\)

Ta có: BH+CH=BC(H nằm giữa B và C)

\(\Leftrightarrow CH=BC-BH=13-\dfrac{25}{13}\)

hay \(CH=\dfrac{144}{13}cm\)

Vậy: AC=12cm; \(AH=\dfrac{60}{13}cm\)\(BH=\dfrac{25}{13}cm\)\(CH=\dfrac{144}{13}cm\)

Đinh Hoàng Nhất Quyên
Xem chi tiết
HT.Phong (9A5)
19 tháng 8 2023 lúc 13:47

1) Mình làm rồi nhé:

https://hoc24.vn/cau-hoi/cho-dabc-can-tai-a-co-bc-5cm-b-c-40-tinh-ab-va-duong-cao-ah.8311486416239

2) Xét tam giác vuông ABH ta có: 

\(cosB=\dfrac{AH}{AB}\)

\(\Rightarrow cos60^o=\dfrac{5}{AB}\Rightarrow AB=\dfrac{5}{cos60^o}=10\)

Áp dụng định lý Py-ta-go vào tam giác này ta có:

\(AB^2=AH^2+BH^2\)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{10^2-5^2}=5\sqrt{3}\)

Mà: \(BH+CH=BC\)

\(\Rightarrow CH=BC-BH=10-5\sqrt{3}\approx1,3\)

Áp dụng định lý Py-ta-go ta có:

\(AC=\sqrt{CH^2+AH^2}=\sqrt{1,3^2+5^2}\approx5,2\)