a: Xét ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
a: Xét ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
Bài 3: Cho ΔABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc BC (H thuộc BC)
a. Chứng minh: HB = HC.
b. Tính độ dài AH.
c. Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC).
Chứng minh ΔHDE cân.
d) So sánh HD và HC.
Bài 4. Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.
a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.
b) Chứng minh AM
c) Tính độ dài các đoạn thẳng BM và AM.
d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?
Cho cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc BC (HBC)
a) Chứng minh: HB = HC.
b) Tính độ dài AH.
c) Kẻ HD vuông góc với AB (DAB), kẻ HE vuông góc với AC (EAC).
Chứng minh cân.
d) So sánh HD và HC.
cho tam giác ABC cân có AB = AC = 5cm, BC =8cm. kẻ AH vuông góc với BC(H thuộc BC)
a, chứng minh HB=HC
b, tính độ dài AH
c, kẻ HD vuông góc với AB( D thuộc AB), kẻ HE vuông góc với AC( E thuộc AC). CHỨNG MINH TAM GIÁC HDE cân
d, so sánh HD và HC
cho tam giác abc cân tại a có AB=AC=5cm, BC=8cm. kẻ AH vuông góc với BC (H thuộc BC) a) chứng minh HB=HC và góc BAH= góc CAH. b) tính độ dài AH. c) kẻ HD vươong góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
, cho tam giác ABC cân có AB=AC=5cm, BC=8cm. kẻ AH vuông góc BC(H thuộc BC)
a) chứng minh :HB=HC
b) tính độ dài AH
c) kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC)
d) so sánh HD và HC
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC). a, Chứng minh HB=HC b, Tính độ dài AH. c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân. d, CM: AH là đường trung trực của đoạn thẳng DE ( giúp mk vs mai mk phải nộp rồi)
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng
minh tam giác HDE cân.
d, So sánh HD và HC.
Cho tam giác cân ABC có AB=AC=5cm , BC=8cm .Kẻ AH vuông góc với BC (H thuộc BC)
a) chứng minh HB=HC và góc CAH = góc BAH
b) Tính độ dài AH
c) Kẻ HD vuông góc với AB (C thuộc AB),kẻ HE vuông góc với AC (E thuộc AC) .Chứng minh rằng DE//BC
1) Cho tam gics ABC cân, AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC ( H thuộc BC )
a, Chứng minh rằng HB=HC
b, Tính độ dài AH
c, Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC). Chứng minh tam giác HDE cân
d, So sánh HD và HC
2) Cho tam giác ABC có CA = CB = 10cm, AB = 12cm. Kẻ CI vuông góc với AB, kẻ IH vuông góc với AC, IK vuông góc với BC
a, Chứng minh HC = CK và tính độ dài CI
b, Chứng minh IH = IK
c, Chứng minh HK//AB