Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Na Trần

Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC). a, Chứng minh HB=HC b, Tính độ dài AH. c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân. d, CM: AH là đường trung trực của đoạn thẳng DE ( giúp mk vs mai mk phải nộp rồi)

oki pạn
6 tháng 2 2022 lúc 10:59

a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC

b.áp dụng định lý pitago ta có:

\(AB^2=AH^2+HB^2\)

\(5^2=AH^2+\left(8:2\right)^2\)

\(AH=\sqrt{5^2-4^2}=3cm\)

c.Xét tam giác vuông BHD và tam giác vuông CHE, có:

BH = CH ( cmt )

góc B = góc C ( ABC cân )

Vậy tam giác vuông BHD = tam giác vuông CHE 

=> HD = HE 

=> HDE cân tại H

d.ta có AB = AD + DB

           AC = AE + EC

Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )

=> AD = AE 

=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )

Chúc bạn học tốt !!!!


Các câu hỏi tương tự
Đoàn Đức Duy
Xem chi tiết
nguyen yen nhi
Xem chi tiết
Nguyễn Thành Đạt
Xem chi tiết
hà ngọc linh
Xem chi tiết
phan thị hàn an
Xem chi tiết
Huỳnh Nhật Duy
Xem chi tiết
Trần Thu Trang
Xem chi tiết
Bùi Cẩm Thảo Hiền
Xem chi tiết
Đỗ ĐôRêMon
Xem chi tiết