I : tìm min
\(A=x+\sqrt{x}\)
\(B=x-\sqrt{x}\)
help me !!!
I : Tìm min
F=\(\sqrt{x^2+2019}\)
G=\(\sqrt{x^2-x+1}\)
help me !!!
F=\(\sqrt{x^2+2019}\)
=>\(F^2=x^2+2019 =>x^2+2019\)≥2019
=> \(F^2 \)min=2019=>F min=\(\sqrt{2019}\)<=>x=0
G=\(\sqrt{x^2-x+1}\)=\(\sqrt{x^2-2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}}\)=\(\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\) \(\ge\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}\)
Dấu "=" xảy ra <=> x=\(\frac{1}{2}\)
Vậy minG=\(\frac{\sqrt{3}}{2}\) <=> x\(=\frac{1}{2}\)
I : Tìm max
\(A=\sqrt{4-x^2}\)
B=\(\sqrt{-x^2+x+\frac{1}{4}}\)
help me !!!
Câu 1:
Áp dụng BĐT Cô-si:
\(A=\sqrt{\left(2-x\right)\left(2+x\right)}\le\frac{2-x+2+x}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow2-x=2+x\Leftrightarrow x=0\)
Câu 2:
\(B=\sqrt{-x^2+x+\frac{1}{4}}\)
\(B=\sqrt{-\left(x^2-x-\frac{1}{4}\right)}\)
\(B=\sqrt{-\left(x^2-x+\frac{1}{4}-\frac{1}{2}\right)}\)
\(B=\sqrt{-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\right]}\)
\(B=\sqrt{\frac{1}{2}-\left(x-\frac{1}{2}\right)^2}\le\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
I : Tìm điều kiện xác định cho biểu thức sau :
a) \(\sqrt{\frac{3-4x}{x+1}}\)
b)\(\sqrt{\frac{5-x}{x-2}}\)
c) \(\sqrt{\frac{5-x}{x^2-9}}\)
help me
I :
a) Tìm min của : A=(x-1)^2+(x-2)^2
b) Tìm max của : B= 8x-4x^2-3
II: tìm x,y,z thỏa mãn
x^2+y^2+z^2=4x-2y+6z-14
help me
I:
a: \(=x^2-2x+1+x^2-4x+4\)
\(=2x^2-6x+5\)
\(=2\left(x^2-3x+\dfrac{5}{2}\right)\)
\(=2\left(x^2-3x+\dfrac{9}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\)
Dấu = xảy ra khi x=3/2
b: \(=-4\left(x^2-2x+\dfrac{3}{4}\right)\)
\(=-4\left(x^2-2x+1-\dfrac{1}{4}\right)=-4\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1
Cho P= \(\dfrac{x+3}{\sqrt{x}+1}\)
Tìm min của P
Help me plssssssssssssssss
\(P=\dfrac{x-1+4}{\sqrt{x}+1}=\sqrt{x}-1+\dfrac{4}{\sqrt{x}+1}\)
\(=\sqrt{x}+1+\dfrac{4}{\sqrt{x}+1}-2>=2\cdot2-2=2\)
Dấu = xảy ra khi x=1
Cho \(A=\dfrac{2+\sqrt{x}}{\sqrt{x}}\)
\(B=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)
Tìm x nguyên lớn nhất để \(\dfrac{A}{B}>\dfrac{3}{2}\)
Help me plssssss
\(P=A:B=\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
P>3/2
=>P-3/2>0
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{3}{2}>0\)
=>\(\dfrac{2\sqrt{x}+2-3\sqrt{x}}{2\sqrt{x}}>0\)
=>-căn x+2>0
=>-căn x>-2
=>0<x<4
help!!!
P=\(\left(1-\frac{\sqrt{3}}{x-9}+\frac{3}{\sqrt{x}-3}\right):\frac{\sqrt{x}}{\sqrt{x}+3}\)
a, rút gọn P
b, tìm x để A nguyên
Rút gọn các biểu thức
a)\(\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{3}{\sqrt{a}+3}-\dfrac{a-2}{a-9}\)
b)\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
Help me !!!
\(a,\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{3}{\sqrt{a}+3}-\dfrac{a-2}{a-9}\left(dkxd:a\ne9,a\ge0\right)\)
\(=\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{3}{\sqrt{a}+3}-\dfrac{a-2}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)-3\left(\sqrt{a}-3\right)-a+2}{a-9}\)
\(=\dfrac{a+3\sqrt{a}-3\sqrt{a}+9-a+2}{a-9}\)
\(=\dfrac{11}{a-9}\)
\(b,\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\left(dkxd:x\ge0,x\ne1\right)\)
\(=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\)
\(=\dfrac{x+2+x-1-x-\sqrt{x}-1}{x\sqrt{x}-1}\)
\(=\dfrac{x-\sqrt{x}}{x\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{3}{\sqrt{a}+3}-\dfrac{a-2}{a-9}\left(\text{đ}k\text{x}\text{đ}:a\ge0;a\ne9\right)\\ =\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)}{\left(\sqrt{a-3}\right)\left(\sqrt{a+3}\right)}-\dfrac{3\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\dfrac{a-2}{\left(\sqrt{a}+3\right)\left(\sqrt{a-3}\right)}\\ =\dfrac{a+3\sqrt{a}-\left(3\sqrt{a}-9\right)-\left(a-2\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\\ =\dfrac{a+3\sqrt{a}-3\sqrt{a}+9-a+2}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\\ =\dfrac{11}{\left(\sqrt{a}-3\right)\left(\sqrt{a+3}\right)}\)
\(b,\dfrac{a+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\left(\text{đ}k\text{x}\text{đ}:x\ge0;x\ne1\right)\\ =\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x+1}\right)}\\ =\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
I : Cho f(x)= \(\sqrt{4-x^2}\) . Tìm đồng biến nghịch biến của hàm số
Help me !!!