chung minh dang thuc
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
cho a,b,c,d la cac so thuc thoa ma dang thuc a+b+c+d=0.chung minh rang:
\(a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)
Ta có \(a+b+c+d=0\Leftrightarrow a+c=-\left(b+d\right)\Leftrightarrow\left(a+c\right)^3=\left[-\left(b+d\right)\right]^3\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-3b^2d-3bd^2-d^3\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2c-3ac^2-3b^2d-3bd^2\Leftrightarrow a^3+b^3+c^3+d^3=-3ac\left(a+c\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)Vậy \(a+b+c+d=0\) thì \(a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)
cho cac so thuc duong a b c thoa a^2+b^2+c^2>=3 chung minh
\(\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}+\frac{\left(b+1\right)\left(c+2\right)}{\left(c+1\right)\left(c+5\right)}+\frac{\left(c+1\right)\left(a+2\right)}{\left(a+1\right)\left(a+5\right)}\ge\frac{3}{2}\)
Ta có đánh giá \(\frac{b+2}{\left(b+1\right)\left(b+5\right)}\ge\frac{3}{4\left(b+2\right)}\)
Thật vậy, BĐT trên tương đương:
\(4\left(b+2\right)^2\ge3\left(b+1\right)\left(b+5\right)\)
\(\Leftrightarrow b^2-2b+1\ge0\Leftrightarrow\left(b-1\right)^2\ge0\) (luôn đúng)
\(\Rightarrow\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}\ge\frac{3\left(a+1\right)}{4\left(b+2\right)}\)
Tương tự và cộng lại: \(P\ge\frac{3}{4}\left(\frac{a+1}{b+2}+\frac{b+1}{c+2}+\frac{c+1}{a+2}\right)\)
\(P\ge\frac{3}{4}\left(\frac{\left(a+1\right)^2}{ab+2a+b+2}+\frac{\left(b+1\right)^2}{bc+2b+c+2}+\frac{\left(c+1\right)^2}{ca+2c+a+2}\right)\)
\(P\ge\frac{3}{4}.\frac{\left(a+b+c+3\right)^2}{ab+bc+ca+3a+3b+3c+6}\)
\(P\ge\frac{3}{4}.\frac{a^2+b^2+c^2+2ab+2bc+2ca+6a+6b+6c+9}{ab+bc+ca+3a+3b+3c+6}\)
\(P\ge\frac{3}{4}.\frac{2ab+2bc+2ca+6a+6b+6c+12}{ab+bc+ca+3a+3b+3c+6}=\frac{3}{4}.2=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
chứng minh rằng
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
cho 2 so thuc a,b thoa man a>1va b>1 chung minh rang\(\frac{a^3+b^3-\left(a^2+b^2\right)}{\left(a-1\right)\left(b-1\right)}\)
\(A=\frac{a^3+b^3-\left(a^2+b^2\right)}{\left(a-1\right)\left(b-1\right)}=\frac{a^2\left(a-1\right)+b^2\left(b-1\right)}{\left(a-1\right)\left(b-1\right)}=\frac{a^2}{b-1}+\frac{b^2}{a-1}\)
(chơi 3 cách luôn cho máu :3)
Cách 1, Áp dụng Svacxơ đc
\(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge\frac{\left(a+b\right)^2}{a+b-2}=\frac{t^2}{t-2}\left(t=a+b>2\right)\)
Ta luôn có \(\frac{t^2}{t-2}\ge8\left(1\right)\)thật vậy
\(\left(1\right)\Leftrightarrow t^2\ge8t-16\Leftrightarrow t^2-8t+16\ge0\Leftrightarrow\left(t-4\right)^2\ge0\left(True\right)\)
=> Đpcm
Cách 2, \(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge2\sqrt{\frac{a^2.b^2}{\left(b-1\right)\left(a-1\right)}}=2.\frac{a}{\sqrt{a-1}}.\frac{b}{\sqrt{b-1}}\)
Ta đi c/m \(\frac{a}{\sqrt{a-1}}\ge2\left(#\right)\)thật vậy
\(\left(#\right)\Leftrightarrow a\ge2\sqrt{a-1}\Leftrightarrow a^2\ge4a-4\Leftrightarrow a^2-4a+4\ge0\Leftrightarrow\left(a-2\right)^2\ge0\left(true\right)\)
=> (#) đúng
tương tự\(\frac{b}{\sqrt{b-1}}\ge2\)
\(\Rightarrow A\ge2.2.2=8\)(Đpcm)
Cách 3 , \(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}=\frac{\left(a-1+1\right)^2}{b-1}+\frac{\left(b-1+1\right)^2}{a-1}\)
\(=\frac{\left(a-1\right)^2+2\left(a-1\right)+1}{b-1}+\frac{\left(b-1\right)^2+2\left(b-1\right)+1}{a-1}\)
\(=\frac{\left(a-1\right)^2}{b-1}+\frac{2\left(a-1\right)}{b-1}+\frac{1}{b-1}+\frac{\left(b-1\right)^2}{a-1}+\frac{2\left(b-1\right)}{a-1}+\frac{1}{a-1}\)
\(=\left[\frac{\left(a-1\right)^2}{b-1}+\frac{\left(b-1\right)^2}{a-1}\right]+2\left(\frac{a-1}{b-1}+\frac{b-1}{a-1}\right)+\left(\frac{1}{b-1}+\frac{1}{a-1}\right)\)
\(\ge2\sqrt{\frac{\left(a-1\right)^2.\left(b-1\right)^2}{\left(b-1\right)\left(a-1\right)}}+2.2\sqrt{\frac{a-1}{b-1}.\frac{b-1}{a-1}}+\frac{2}{\sqrt{\left(a-1\right)\left(b-1\right)}}\)
\(=2\sqrt{\left(a-1\right)\left(b-1\right)}+\frac{2}{\sqrt{\left(a-1\right)\left(b-1\right)}}+4\)
\(\ge2\sqrt{2\sqrt{\left(a-1\right)\left(b-1\right)}.\frac{2}{\sqrt{\left(a-1\right)\left(b-1\right)}}}+4\)
\(=2.2+4=8\)
Dấu "=" xảy ra tại a = b = 2
Bài 8.CM các hằng dẳng tức sau
1) \(\left(a+b\right)^2-\left(a-b\right)^2=4ab\)
2) \(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\)
3) \(\left(a+b\right)^2-4ab=\left(a-b\right)^2\)
4)\(\left(a-b\right)^2+4ab=\left(a+b\right)^2\)
1. Ta có: \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)\)
\(=2a.2b=4ab\)
=> đpcm
2. Ta có: \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\)
\(=2a^2+2b^2=2\left(a^2+b^2\right)\)
=> đpcm
3. Ta có:\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab\)
\(=a^2-2ab+b^2=\left(a-b\right)^2\)
=> đpcm
4. Ta có: \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2\)
\(a,\left(a+b\right)^2-\left(a-b\right)^2=4ab\)
\(\Leftrightarrow\left(a^2+b^2+2ab\right)-\left(a^2+b^2-2ab\right)=4ab\)
\(\Leftrightarrow a^2+b^2-a^2-b^2+2ab+2ab=4ab\)
\(\Leftrightarrow4ab=4ab\Leftrightarrow4ab-4ab=0\Leftrightarrow0=0\)(đpcm)
\(b,\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a^2+b^2+2ab\right)+\left(a^2+b^2-2ab\right)=2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2+a^2+b^2+\left(2ab-2ab\right)=2\left(a^2+b^2\right)\)
\(\Leftrightarrow2\left(a^2+b^2\right)=2\left(a^2+b^2\right)\Leftrightarrow2\left(a^2+b^2\right)-2\left(a^2+b^2\right)=0\Leftrightarrow0=0\)(đpcm)
\(c,\left(a+b\right)^2-4ab=\left(a-b\right)^2\)
\(\Leftrightarrow\left(a^2+b^2+2ab\right)-4ab=a^2+b^2-2ab\)
\(\Leftrightarrow a^2+b^2-2ab=a^2+b^2-2ab\)
\(\Leftrightarrow\left(a-b\right)^2=\left(a-b\right)^2\Leftrightarrow\left(a-b\right)^2-\left(a-b\right)^2=0\Leftrightarrow0=0\)(đpcm)
\(d,\left(a-b\right)^2+4ab=\left(a+b\right)^2\)
\(\Leftrightarrow\left(a^2+b^2-2ab\right)+4ab=\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2-2ab+4ab=\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2+2ab=\left(a+b\right)^2\Leftrightarrow\left(a+b\right)^2=\left(a+b\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2-\left(a+b\right)^2=0\Leftrightarrow0=0\)(đpcm)
1) \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)\)
\(=2b.2a=4ab\)( đpcm )
2) \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\)
\(=2\left(a^2+b^2\right)\)( đpcm )
3) \(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab\)
\(=a^2-2ab+b^2=\left(a-b\right)^2\)( đpcm )
4) \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2\)( đpcm )
Chứng minh rằng
a) ( a + b ) = \(\left(a-b\right)^2\)+ 4ab
b) \(\left(a-b\right)^2\)= \(\left(a+b\right)^2\)- 4ab
Ta có: \(VP=\left(a-b\right)\left(a-b\right)+4ab\)
\(=a^2-2ab-b^2+4ab\)
\(=a^2-b^2+2ab=\left(a+b\right)^2=VT\left(đpcm\right)\)
b, \(VP=\left(a+b\right)\left(a+b\right)-4ab\)
\(=a^2+2ab+b^2-4ab\)
\(=a^2+b^2-2ab=\left(a-b\right)^2=VT\left(đpcm\right)\)
a) \(\left(a+b\right)^2=\left(a-b\right)+4ab
\)
b) \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
c) \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax-by\right)^2+\left(ay+bx\right)^2\)
a) Sửa đề: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
Ta có: \(VP=\left(a-b\right)^2+4ab\)
\(=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2\)
\(=\left(a+b\right)^2=VT\)(đpcm)
b) Ta có: \(VT=\left(a-b\right)^2\)
\(=a^2-2ab+b^2\)
\(=a^2+2ab+b^2-4ab\)
\(=\left(a+b\right)^2-4ab=VP\)(đpcm)
c) Ta có: \(VP=\left(ax-by\right)^2+\left(ay+bx\right)^2\)
\(=a^2x^2-2axby+b^2y^2+a^2y^2+2aybx+b^2x^2\)
\(=a^2x^2+b^2y^2+a^2y^2+b^2x^2\)
\(=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)
\(=\left(x^2+y^2\right)\left(a^2+b^2\right)=VT\)(đpcm)
Cô quản lí Nguyễn Linh Chi nhờ mình làm VD1 trong link: Bất đẳng thức Cauchy ( Cô-si) - Học toán với OnlineMath
Chứng minh:
\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8\left(abc\right)^2\)
Ta có :)
\(\hept{\begin{cases}a^2+b^2\ge2\sqrt{a^2b^2}=2|ab|\\b^2+c^2\ge2\sqrt{b^2c^2}=2|bc|\\c^2+a^2\ge\sqrt{c^2a^2}=2|ca|\end{cases}}\Rightarrow\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8|\left(abc\right)^2|=8a^2b^2c^2\)
(vì a2+b2; b2+c2; c2+a2;|ab|;|bc|;|ca| đều \(\ge0\))
1. CMR:
a)\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
b)\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
a)VT=\(\left(a+b\right)^2=a^2+2ab+b^2\)(1)VP=\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)(2)
từ (1) và (2)\(\Rightarrow\)VT=VP.Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)
a) Ta có \(VP=\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2=VT\)
\(\Rightarrow\)đpcm
b) Ta có \(VP=\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab\)
\(=a^2-2ab+b^2=\left(a-b\right)^2=VT\)
\(\Rightarrow\)đpcm
a, Ta có:
\(\left(a-b\right)^2+4ab\)
\(=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2=VT\)
=>đpcm
b, ta có:
\(Vp=\left(a+b\right)^2-4ab\)
\(=a^2+2ab+b^2-4ab\)
\(=a^2-2ab+b^2=\left(a-b\right)^2=VT\)
=>đpcm