Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
duka
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 21:10

1A:

a: \(x^3+2x=x\left(x^2+2\right)\)

b: \(3x-6y=3\left(x-2y\right)\)

c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)

\(=5\left(x+3y\right)\left(1-3x\right)\)

d: \(3\left(x-y\right)-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+3\right)\)

Koro-sensei
7 tháng 10 2021 lúc 21:13

1A. a. x(x2+2) 

b. 3(x-2y)

c. 5(x+3y)(1-3x) 

d. (x-y) (3-5x)

1B. a. 2x(2x-3)

b.xy(x2-2xy+5)

c. 2x(x+1)(x+2)

d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)

 

Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 21:20

1B:

a: \(4x^2-6x=2x\left(2x-3\right)\)

b: \(x^3y-2x^2y^2+5xy\)

\(=xy\left(x^2-2xy+5\right)\)

Nguyễn Hữu Nguyên
Xem chi tiết
Trên con đường thành côn...
29 tháng 7 2021 lúc 10:13

undefined

Nguyễn Lê Phước Thịnh
29 tháng 7 2021 lúc 13:43

a) Ta có: \(x-2y+x^2-4y^2\)

\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x-2y\right)\left(x+2y+1\right)\)

b) Ta có: \(x^2+2xy+y^2-4x^2y^2\)

\(=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y+2xy\right)\left(x+y-2xy\right)\)

c) Ta có: \(x^6-x^4+2x^3+2x^2\)

\(=x^4\left(x-1\right)\left(x+1\right)+2x^2\left(x+1\right)\)

\(=\left(x+1\right)\left[x^4\left(x-1\right)+2x^2\right]\)

\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)

\(=x^2\left(x+1\right)\cdot\left(x^3-x^2+2\right)\)

d) Ta có: \(x^3+3x^2+3x+1-8y^3\)

\(=\left(x+1\right)^3-\left(2y\right)^3\)

\(=\left(x+1-2y\right)\left[\left(x+1\right)^2+2y\left(x+1\right)+4y^2\right]\)

\(=\left(x-2y+1\right)\left(x^2+2x+1+2xy+2y+4y^2\right)\)

Nguyễn Hữu Nguyên
Xem chi tiết
Nguyễn Huy Tú
6 tháng 8 2021 lúc 10:25

a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)

b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)

\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)

\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)

d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)

Nguyễn Lê Phước Thịnh
6 tháng 8 2021 lúc 11:20

a) Ta có: \(x-2y+x^2-4y^2\)

\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x-2y\right)\left(1+x+2y\right)\)

b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)

\(=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

Hồ Hữu Duyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2021 lúc 22:54

a: =5(2x+3y)

d: =(x+1-y)(x+1+y)

Supa Hooman
Xem chi tiết
Tuyết Ly
Xem chi tiết

\(a,3x^2-6x=3x.\left(x-2\right)\\ b,x^2+4x-25y^2+4=\left(x^2+4x+4\right)-25y^2\\ =\left(x+2\right)^2-\left(5y\right)^2\\ =\left(x-5y+2\right).\left(x+5y+2\right)\\ c,2x^2-5x-3\\ =2x^2-6x+x-3\\ =2x.\left(x-3\right)+\left(x-3\right)\\ =\left(2x+1\right).\left(x-3\right)\)

Lihnn_xj
26 tháng 12 2021 lúc 8:01

a, = 3x ( x - 2 )

b, = ( x2 + 4x + 4 ) - 25y2

= ( x + 2 )2 - 25y2

= ( x + 2 - 5y ) ( x + 2 + 5y )

c, 2x2 - 5x + 3           

= 2x2 - 6x + x + 3

= 2x ( x - 3 ) + ( x - 3 )

= ( x - 3 ) ( 2x + 1 )

Ánh Dương
Xem chi tiết
Trần Ái Linh
21 tháng 12 2020 lúc 23:35

a) \(x^2 (x+1)-2x(x+1)+x+1 \\ =(x+1)(x^2-2x+1)\\=(x+1)(x-1)^2\)

b) \(4x^2 -8x+3 \\= (2x^2)-2.2x .2 + 2^2 -1 \\=(2x-2)^2-1^2\\=(2x-2+1)(2x-2-1)\\= (2x-1)(2x-3)\)

Sky lilk Noob---_~Phó꧁ミ...
Xem chi tiết
Lấp La Lấp Lánh
19 tháng 8 2021 lúc 19:56

a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\left(1\right)=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-15=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)

Đặt \(t=x^2+5x+4\)

(1) trở thành: \(t\left(t+2\right)-15=t^2+2t+1-16=\left(t+1\right)^2-4^2=\left(t-3\right)\left(t+5\right)\)

Thay t: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15=\left(x^2+5x+4-3\right)\left(x^2+5x+4+5\right)=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)

b) \(\left(2x+5\right)^2-\left(x-9\right)^2=\left(2x+5-x+9\right)\left(2x+5+x-9\right)=\left(x+14\right)\left(3x-4\right)\)

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 20:38

a: Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24-15\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+9\)

\(=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)

b: \(\left(2x+5\right)^2-\left(x-9\right)^2\)

\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)

\(=\left(x+15\right)\left(3x-4\right)\)

ngọc hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 8 2021 lúc 23:16

Bài 1: 

a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=\left(2x+1\right)\left(3-2x+5\right)\)

\(=\left(2x+1\right)\left(8-2x\right)\)

\(=2\left(4-x\right)\left(2x+1\right)\)

b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)

\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)

\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)

\(=\left(3x-2\right)\left(3x-6\right)\)

\(=3\left(3x-2\right)\left(x-2\right)\)

Nguyễn Lê Phước Thịnh
11 tháng 8 2021 lúc 23:18

Bài 2: 

a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)

\(=\left(a-b\right)\left(2a-4b\right)\)

\(=2\left(a-b\right)\left(a-2b\right)\)

f: Ta có: \(x^2-6xy+9y^2+4x-12y\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-3y+4\right)\)

phạm bảo anh
10 tháng 9 2021 lúc 9:36

whatterfice

Khách vãng lai đã xóa
Scarlett Ohara
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 7 2021 lúc 22:00

a.

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1+3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)

\(=\left(x+3z+1\right)\left(x^2+2x+1+3zx+3z+9z^2\right)\)

b.

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

c.

\(=x^4-1+4x^2-4\)

\(=\left(x^2-1\right)\left(x^2+1\right)+4\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

Nguyễn Lê Phước Thịnh
16 tháng 7 2021 lúc 22:06

a) Ta có: \(x^3+3x^2+3x+1-27z^3\)

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

b) Ta có: \(x^2-2xy+y^2-zx+yz\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

c) Ta có: \(x^4+4x^2-5\)

\(=x^4+4x^2+4-9\)

\(=\left(x^2+2\right)^2-3^2\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)