Phân tích đa thức thành nhân tử:
a) x^3 - 3x^2 - x - 3
b) 3 + 2x - x^2
1A. Phân tích các đa thức sau thành nhân tử:
a) x3+2x; b) 3x - 6y;
c) 5(x + 3y)- 15x(x + 3y); d) 3(x-y)- 5x(y-x).
1B. Phân tích các đa thức sau thành nhân tử:
a) 4x2 - 6x; b) x3y - 2x2y2 + 5xy;
c) 2x2(x +1) + 4x(x +1); d) 2 x(y - 1) - 2
y(1 - y).
5 5
2A. Phân tích các đa thức sau thành nhân tử: a) 2(x -1)3 - 5(x -1)2 - (x - 1);
b) x(y - x)3 - y(x - y)2 + xy(x - y);
c) xy(x + y)- 2x - 2y;
d) x(x + y)2 - y(x + y)2 + y2 (x - y).
2B. Phân tích đa thức thành nhân tử: a) 4(2-x)2 + xy - 2y;
b) x(x- y)3 - y(y - x)2 - y2(x - y);
c) x2y-xy2 - 3x + 3y;
d) x(x + y)2 - y(x + y) 2 + xy - x 2 .
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
1B:
a: \(4x^2-6x=2x\left(2x-3\right)\)
b: \(x^3y-2x^2y^2+5xy\)
\(=xy\left(x^2-2xy+5\right)\)
Phân tích đa thức thành nhân tử:
a) x - 2y + x^2- 4y^2
b) x^2 - 4x^2y^2 + y^2 + 2xy
c) x^6 - x^4 +2x^3 + 2x^2
d) x^3 + 3x^2 + 3x +1 - 8y^3
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(x+2y+1\right)\)
b) Ta có: \(x^2+2xy+y^2-4x^2y^2\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y+2xy\right)\left(x+y-2xy\right)\)
c) Ta có: \(x^6-x^4+2x^3+2x^2\)
\(=x^4\left(x-1\right)\left(x+1\right)+2x^2\left(x+1\right)\)
\(=\left(x+1\right)\left[x^4\left(x-1\right)+2x^2\right]\)
\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)
\(=x^2\left(x+1\right)\cdot\left(x^3-x^2+2\right)\)
d) Ta có: \(x^3+3x^2+3x+1-8y^3\)
\(=\left(x+1\right)^3-\left(2y\right)^3\)
\(=\left(x+1-2y\right)\left[\left(x+1\right)^2+2y\left(x+1\right)+4y^2\right]\)
\(=\left(x-2y+1\right)\left(x^2+2x+1+2xy+2y+4y^2\right)\)
Phân tích đa thức thành nhân tử:
a) x - 2y + x^2 - 4y^2
b) x^2 - 4x^2y^2 + y^2 + 2xy
c) x^6 - x^4 + 2x^3 + 2x^2
d) x^3 + 3x^2 + 3x + 1 - 8y^3
a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)
b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(1+x+2y\right)\)
b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
Phân tích đa thức thành nhân tử:
a) \(\text{10x+15y}\)
b) \(\text{x(x+y) - 5x - 5y}\)
c) \(3x^3-6x^2+3x\)
d) \(x^2-y^2+2x+1\)
a: =5(2x+3y)
d: =(x+1-y)(x+1+y)
Phân tích đa thức sau thành nhân tử:
a)7x^3y-14x^2y^2+7xy^3
b)3x^2-3xy-5x+5y
c)x^2+7x+12
Vô đây xem: bài 1:phân tích đa thức thành nhân tửa)7x^3y-14x^2y+7xy^3b)3x^2-3xy-5x+5yc)x^2+7x+12giúp mình với - Hoc24
Phân tích đa thức thành nhân tử:
a) 3x² – 6x
b) x² + 4x – 25y² + 4
c) 2x² – 5x – 3
\(a,3x^2-6x=3x.\left(x-2\right)\\ b,x^2+4x-25y^2+4=\left(x^2+4x+4\right)-25y^2\\ =\left(x+2\right)^2-\left(5y\right)^2\\ =\left(x-5y+2\right).\left(x+5y+2\right)\\ c,2x^2-5x-3\\ =2x^2-6x+x-3\\ =2x.\left(x-3\right)+\left(x-3\right)\\ =\left(2x+1\right).\left(x-3\right)\)
a, = 3x ( x - 2 )
b, = ( x2 + 4x + 4 ) - 25y2
= ( x + 2 )2 - 25y2
= ( x + 2 - 5y ) ( x + 2 + 5y )
c, 2x2 - 5x + 3
= 2x2 - 6x + x + 3
= 2x ( x - 3 ) + ( x - 3 )
= ( x - 3 ) ( 2x + 1 )
phân tích đa thức thành nhân tử:a, x^2(x+1)-2x(x+1)+x+1b, 4x^2 - 8x +3
a) \(x^2 (x+1)-2x(x+1)+x+1 \\ =(x+1)(x^2-2x+1)\\=(x+1)(x-1)^2\)
b) \(4x^2 -8x+3 \\= (2x^2)-2.2x .2 + 2^2 -1 \\=(2x-2)^2-1^2\\=(2x-2+1)(2x-2-1)\\= (2x-1)(2x-3)\)
Phân tích đa thức thành nhân tử:
a) (x+1)(x+2)(x+3)(x+4)-15
b) ((2x+5)^2)-(x-9)^2
a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\left(1\right)=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-15=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)
Đặt \(t=x^2+5x+4\)
(1) trở thành: \(t\left(t+2\right)-15=t^2+2t+1-16=\left(t+1\right)^2-4^2=\left(t-3\right)\left(t+5\right)\)
Thay t: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15=\left(x^2+5x+4-3\right)\left(x^2+5x+4+5\right)=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)
b) \(\left(2x+5\right)^2-\left(x-9\right)^2=\left(2x+5-x+9\right)\left(2x+5+x-9\right)=\left(x+14\right)\left(3x-4\right)\)
a: Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24-15\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+9\)
\(=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)
b: \(\left(2x+5\right)^2-\left(x-9\right)^2\)
\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)
\(=\left(x+15\right)\left(3x-4\right)\)
Bài 1: Phân tích đa thức thành nhân tử
a) (6x+3)-(2x-5)(2x+1)
b) (3x-2)(4x-3)-(2-3x)(x-1)-2(3x-2)(x+1)
Bài 2*:Phân tích đa thức thành nhân tử
a) (a-b)(a+2b)-(b-a)(2a-b)-(a-b)(a+3b)
b) 5xy3-2xy2-15y2+6z
c) (x+y)(2x-y)+(2x-y)(3x-y)-(y-2x)
d) ab3c2-a2b2c2+ab2c3-a2bc
e) x2(y-z)+y2(z-x)+z2(x-y)
f) x2-6xy+9y2+4x-12y
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
Phân tích đa thức thành nhân tử:
a, \(x^3+3x^2+3x+1-27z^3\)
b, \(x^2-2xy+y^2-xz+yz\)
c, \(x^4+4x^2-5\)
a.
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1+3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)
\(=\left(x+3z+1\right)\left(x^2+2x+1+3zx+3z+9z^2\right)\)
b.
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c.
\(=x^4-1+4x^2-4\)
\(=\left(x^2-1\right)\left(x^2+1\right)+4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) Ta có: \(x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
b) Ta có: \(x^2-2xy+y^2-zx+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c) Ta có: \(x^4+4x^2-5\)
\(=x^4+4x^2+4-9\)
\(=\left(x^2+2\right)^2-3^2\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)