Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Nam Phong
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 8 2021 lúc 20:58

\(tanB=\sqrt{2}\Rightarrow\dfrac{AC}{AB}=\sqrt{2}\Rightarrow\dfrac{AC^2}{AB^2}=2\)

\(\Rightarrow\dfrac{AC^2}{AB^2}+1=3\Rightarrow\dfrac{AC^2+AB^2}{AB^2}=3\Rightarrow\dfrac{BC^2}{AB^2}=3\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{1}{\sqrt{3}}\)

Mà \(sinC=\dfrac{AB}{BC}\Rightarrow sinC=\dfrac{1}{\sqrt{3}}\)

\(sin^2C+cos^2C=1\Rightarrow\dfrac{1}{3}+cos^2C=1\Rightarrow cosC=\dfrac{\sqrt{6}}{3}\)

\(tanC=\dfrac{sinC}{cosC}=\dfrac{\sqrt{2}}{2}\)

b.

Trong tam giác vuông ACH:

\(sinC=\dfrac{AH}{AC}\Rightarrow AC=\dfrac{AH}{sinC}=\dfrac{2\sqrt{3}}{\dfrac{1}{\sqrt{3}}}=6\left(cm\right)\)

Trong tam giác vuông ABC:

\(tanB=\dfrac{AC}{AB}\Rightarrow AB=\dfrac{AC}{tanB}=\dfrac{6}{\sqrt{2}}=3\sqrt{2}\)

Áp dụng Pitago:

\(BC=\sqrt{AB^2+AC^2}=3\sqrt{6}\left(cm\right)\)

Nguyễn Việt Lâm
25 tháng 8 2021 lúc 20:58

undefined

Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 21:50

a: Xét ΔABC vuông tại A có 

\(\tan\widehat{B}=\sqrt{2}\)

\(\Leftrightarrow AC=AB\cdot\sqrt{2}\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3\cdot AB^2\)

hay \(BC=AB\cdot\sqrt{3}\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)

\(\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{\sqrt{2}}{\sqrt{3}}=\dfrac{\sqrt{6}}{3}\)

\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

\(\cot\widehat{C}=\sqrt{2}\)

Trần Thị Cu
Xem chi tiết
Nguyễn Hoàng Minh
28 tháng 10 2021 lúc 11:04

\(\tan B=\sqrt{2}\Leftrightarrow\dfrac{\sin B}{\cos B}=\sqrt{2}\Leftrightarrow\sin B=\sqrt{2}\cos B\\ \sin^2B+\cos^2B=1\Leftrightarrow3\cos^2B=1\\ \Leftrightarrow\cos B=\sqrt{\dfrac{1}{3}}=\dfrac{\sqrt{3}}{3}\\ \Leftrightarrow\sin B=\dfrac{\sqrt{6}}{3}\\ \Leftrightarrow\left\{{}\begin{matrix}\sin C=\cos B=\dfrac{\sqrt{3}}{3}\\\cos C=\sin B=\dfrac{\sqrt{6}}{3}\end{matrix}\right.\\ \cot C=\tan B=\sqrt{3};\tan C=\dfrac{1}{\cot C}=\dfrac{\sqrt{3}}{3}\)

duahau tv
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 10 2021 lúc 7:17

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

lê thành nhân
Xem chi tiết
ngọc anh nguyễn
Xem chi tiết
son duong
Xem chi tiết
Bảo Duy
Xem chi tiết
Cee Hee
1 tháng 10 2023 lúc 19:33

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

Cee Hee
1 tháng 10 2023 lúc 20:24

a) Xét \(\Delta ABC\) vuông tại `A`

Ta có: \(BC^2=AB^2+AC^2\) (đl Pytago)

\(\Rightarrow5^2=4^2+AC^2\\ \Rightarrow AC^2=5^2-4^2\\ \Rightarrow AC^2=25-16=9\\ \Rightarrow AC=\sqrt{9}=3cm\) 

Vậy: \(AC=3cm\)

Ta có: \(CosC=\dfrac{AC}{BC}\left(tslg\right)\)

\(\Rightarrow CosC=\dfrac{3}{5}\\ \Rightarrow CosC\approx53^o\)

Vậy: Góc C khoảng \(53^o\)

Ta có: \(TanB=\dfrac{AC}{AB}\left(tslg\right)\)

\(\Rightarrow TanB=\dfrac{3}{4}\\ \Rightarrow TanB\approx37^o\)

Vậy: Góc B khoảng \(37^o\) 

_

b) Xét \(\Delta ABC\) vuông tại `A`

Ta có: \(BC^2=AB^2+AC^2\) (đl Pytago)

\(\Rightarrow10^2=5^2+AC^2\\ \Rightarrow AC^2=10^2-5^2\\\Rightarrow AC^2=100-25=75\\ \Rightarrow AC=\sqrt{75}=5\sqrt{3}cm\)

Vậy: \(AC=5\sqrt{3}cm\)

Ta có: \(SinC=\dfrac{AB}{BC}\left(tslg\right)\)

 \(\Rightarrow SinC=\dfrac{5}{10}\\ \Rightarrow30^o\)

Vậy: Góc C là \(30^o\)

Ta có: \(SinB=\dfrac{AC}{BC}\left(tslg\right)\)

\(\Rightarrow SinB=\dfrac{5\sqrt{3}}{10}\\ \Rightarrow SinB=60^o\)

Vậy: Góc B là \(60^o\).

Quốc Huy
Xem chi tiết
Thầy Kim
18 tháng 10 2021 lúc 11:52

mik nghĩ là sinC=0,8

                 CosC=0,6

                 tanC=\(\dfrac{\text{4}}{3}\)

                 cotgC=0,75

nthv_.
18 tháng 10 2021 lúc 11:55

\(cosC=\dfrac{3}{5}\)

\(sinC=\dfrac{4}{5}\)

\(cotgC=\dfrac{3}{4}\)

\(tanC=\dfrac{4}{3}\)

Quân Minh
Xem chi tiết
Khang Diệp Lục
23 tháng 6 2021 lúc 7:19

Vì tam giác ABC vuông nên ta có:

 \(\text{cosB=sinC=0,8}\)

\(\text{cosC=}\)\(\sqrt{1-sin^2C}\) (theo công thức trong SGK ^^)=\(\sqrt{1-0,8^2}=0,6\)

\(tangC=\dfrac{sinC}{cosC}=\dfrac{0,8}{0,6}=\dfrac{4}{3}\left(\approx1,3\right)\)

\(cotangC=\dfrac{cosC}{sinC}=\dfrac{0,6}{0,8}=0,75\)

Ling ling 2k7
Xem chi tiết