Cho \(a,b>0\)và \(a+b=2\)
Chứng minh \(a^2b^2\left(a^2+b^2\right)\le2\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(a,b,c>0\). Chứng minh \(\dfrac{\left(1+a^2b\right)\left(1+b^2\right)}{\left(a^2-a+1\right)\left(b^3+1\right)}\le2\)
\(\Leftrightarrow1+b^2+a^2\left(b^3+b\right)\le\left(2b^3+2\right)a^2-2\left(b^3+1\right)a+2b^3+2\)
\(\Leftrightarrow\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\ge0\)
Xét tam thức bậc 2: \(f\left(a\right)=\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\)
Ta có: \(b^3+2-b\ge3b-b=2b>0\)
\(\Delta'=\left(b^3+1\right)^2-\left(b^3-b+2\right)\left(2b^3-b^2+1\right)\)
\(\Delta'=-\left(b-1\right)^2\left(b^4+b^3-b^2+b+1\right)\le0\) ; \(\forall b>0\)
\(\Rightarrow f\left(a\right)\ge0\) ; \(\forall a\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(1;1\right)\)
Cho a,b > 0 thỏa a + b = 2. Chứng minh:
\(a^2b^2\left(a^2+b^2\right)\le2\)
Ta có:
\(a^2b^2\left(a^2+b^2\right)=a^2b^2\left(4-2ab\right)=\frac{1}{32}.4ab.\left(4.2ab\left(4-2ab\right)\right)\le\frac{1}{32}\left(a+b\right)^2.\left(a-2ab+2ab\right)^2=2\)
\(a^2b^2\left(a^2+b^2\right)\Leftrightarrow a^2b^2\left[\left(a+b\right)^2-2ab\right]\Leftrightarrow a^2b^2\left(a+b\right)^2-2a^3b^3\Leftrightarrow4a^2b^2-2a^3b^3\)
Ta có: \(a+b\ge2ab\)
mà a+b=2\(\Rightarrow2\ge2ab\)\(\Leftrightarrow1\ge ab\Leftrightarrow ab\le1\Leftrightarrow\)\(a^2b^2\le1\Leftrightarrow4a^2b^2\le4\)(1)
\(\Leftrightarrow a^3b^3\le1\Leftrightarrow2a^3b^3\le2\)(2)
(1)-(2) ta được:
\(4a^2b^2-2a^3b^3\le4-2=2\Rightarrow a^2b^2\left(a^2+b^2\right)\le2\left(đpcm\right)\)
\(2ab\left(a^2+b^2\right)\le\frac{\left(2ab+a^2+b^2\right)^2}{4}=\frac{\left(a+b\right)^4}{4}=4\)(BĐT Cosi) (1)
\(ab\le\frac{\left(a+b\right)^2}{4}=1\)(2)
Từ (1) và (2) suy ra đpcm
Cho a,b,c > 0 và ab+bc+ca=1 Chứng minh \(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le2\left(a+b+c\right)\)
\(VT=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+c\right)\left(b+a\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\le_{AM-GM}\dfrac{a+b+a+c}{2}+\dfrac{b+c+b+a}{2}+\dfrac{c+a+c+b}{2}=2\left(a+b+c\right)=VP\) (đpcm)
Đầy đủ hơn 1 tí nhé
Theo gt : ab + bc + ca = 1 nên a2 + 1 = a2 + ab + bc + ca
= ( a + b )( a + c )
- Áp dụng bđt Cauchy ta có :
\(\sqrt{a^2+1}=\sqrt{\left(a+b\right)\left(a+c\right)}\le\frac{\left(a+b\right)\left(a+c\right)}{2}\)
- Tương tư ta cũng có :
\(\sqrt{b^2+1}\le\frac{\left(b+a\right)+\left(b+c\right)}{2}\)và \(\sqrt{c^2+1}\le\frac{\left(c+a\right)+\left(c+b\right)}{2}\)
Từ đó suy ra : VT \(\le\frac{\left(a+b\right)+\left(a+c\right)+\left(b+a\right)+\left(b+c\right)+\left(c+a\right)+\left(c+b\right)}{2}\)
\(\le2\left(a+b+c\right)=VP\left(đpcm\right)\)
Cho a,b > 0. CMR:
\(\frac{\left(1+a^2b\right)\left(1+b^2\right)}{\left(a^2-a+1\right)\left(1+b^2\right)}\le2\)
Cho hai số không âm a, b thỏa mãn \(a^2+b^2\le2\). Chứng minh rằng \(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le6\)
Áp dụng bất đẳng thức Cô-si :
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le a\cdot\frac{3a+a+2b}{2}+b\cdot\frac{3b+b+2a}{2}\)
\(=a\cdot\frac{4a+2b}{2}+b\cdot\frac{4b+2a}{2}\)
\(=a\left(2a+b\right)+b\left(2b+a\right)\)
\(=2a^2+2b^2+2ab\)
\(=2\left(a^2+b^2+ab\right)\le2\left(2+\frac{a^2+b^2}{2}\right)=2\left(2+\frac{2}{2}\right)=6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)
p/s: có gì chiều giải nốt, giờ đi ăn cơm @@
chứng minh bất đẳng thức:
\(\left(ab+bc\right)^2\le2\left(a^2b^2+b^2c^2\right)\)
Chứng minh tương đương là xong nha
\(\Leftrightarrow a^2b^2+2ab^2c+b^2c^2\le2a^2b^2+2b^2c^2\)
\(\Leftrightarrow a^2b^2-2ab^2c+b^2c^2\ge0\)
\(\Leftrightarrow\left(ab-bc\right)^2\ge0\)luôn đúng
dấu = khi a=c
_Kudo_
Áp dụng bđt Bunhiacopski:
\(2\left(a^2b^2+b^2c^2\right)=\left(1+1\right)\left(a^2b^2+b^2c^2\right)\ge\left(ab+bc\right)^2\)
Dấu "=" khi a = c
1. Cho \(a,b\ge0\) thỏa mãn \(\sqrt{a}+\sqrt{b}=1\) . Chứng minh: \(ab\left(a+b\right)^2\le\dfrac{1}{64}\)
2. Cho \(a,b\ge0\) thỏa mãn \(a^2+b^2\le2\) . Chứng minh: \(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le6\)
3. Cho \(a,b>0\) thỏa mãn \(\dfrac{1}{a^2}+\dfrac{1}{b^2}=2\) . Chứng minh: \(a+b\ge2\)
cho a,b,c >0 .chứng minh
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}+\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}+\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\le8\)
Nhức nhối mãi bài này vì nó làm lag hết máy
Giải
Đặt \(x=\dfrac{b+c}{a};y=\dfrac{c+a}{b};z=\dfrac{a+b}{c}\)
Ta phải chứng minh \(Σ\dfrac{\left(x+2\right)^2}{x^2+2}\le8\)
\(\LeftrightarrowΣ\dfrac{2x+1}{x^2+2}\le\dfrac{5}{2}\LeftrightarrowΣ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{1}{2}\)
Lại theo BĐT Cauchy-Schwarz ta có:
\(Σ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{\left(x+y+z-3\right)^2}{x^2+y^2+z^2+6}\)
Ta còn phải chứng minh
\(2\left(x^2+y^2+z^2+2xy+2yz+2xz-6x-6y-6z+9\right)\)\(\ge x^2+y^2+z^2+6\)
\(\Leftrightarrow x^2+y^2+z^2+4\left(xy+yz+xz\right)-12\left(x+y+z\right)+12\ge0\)
Bây giờ có \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\ge12\left(xyz\ge8\right)\)
Còn phải chứng minh \(\left(x+y+z\right)^2+24-12\left(x+y+z\right)+12\ge0\)
\(\Leftrightarrow\left(x+y+z-6\right)^2\ge0\) (luôn đúng)
Bởi vì BĐT là thuần nhất, ta có thể chuẩn hóa \(a+b+c=3\). Khi đó
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{a^2+6a+9}{3a^2-6a+9}=\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2+\left(a-1\right)^2}\right)\)
\(\le\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2}\right)=\dfrac{4a+4}{3}\)
Tương tự ta cho 2 BĐT còn lại ta cũng có:
\(\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}\ge\dfrac{4b+4}{3};\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\ge\dfrac{4c+4}{3}\)
Cộng theo vế 3 BĐT trên ta có:
\(Σ\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}\geΣ\left(4a+4\right)=8\)
Câu hỏi của Neet - Toán lớp 9 | Học trực tuyến:Gazeta Matematia
còn câu này là USAMO 2003
Toàn đề máu mặt :)
1. Cho \(a,b,c>0\) và \(ab+bc+ca=abc\). Chứng minh rằng:
\(\dfrac{1}{a+3b+2c}+\dfrac{1}{b+3c+2a}+\dfrac{1}{c+3a+2b}\le\dfrac{1}{6}\)
2. Cho \(a,b\ge0\) và \(a+b=2\) Tìm Max
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+20ab\)
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
2,
\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)
\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(ab=x\Rightarrow0\le x\le1\)
\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)
\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)