Tim GTNN cua A=4xmu2+4x-1
Tim gtnn cua bieu thuc A=(2x^2+4x-1)/(x^2+1)
Tim GTNN cua bieu thuc A= 4x^2 + 12x + 8
Ta có: \(A=4x^2+12x+9-1\)
<=> \(A=\left(2x+3\right)^2-1\)
<=> \(A=\left(2x+3-1\right)\left(2x+3+1\right)\)
<=> \(A=\left(2x+2\right)\left(2x+4\right)\)
<=> \(A=4\left(x+1\right)\left(x+2\right)\ge4.1.2=8\)
Vậy Amin = 8 khi x=0
trần gia bảo bái phục bái phục!
Lời giải
Tự c/m: \(\left(a+b\right)^2=a^2+2ab+b^2\) (phân tích thành (a+b) . (a+b) rồi phá tung cái ngoặc ra)
Ta có: \(A=4\left(x^2+3x+2\right)\) (đặt thừa số chung)
\(=4\left[x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right]\)
\(=4\left[\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\right]=4\left(x+\frac{3}{2}\right)^2-1\ge-1\) (do \(\left(x+\frac{3}{2}\right)^2\ge0\))
Dấu "=" xảy ra khi x + 3/2 = 0 tức là x = -3/2
Vậy Min (GTNN) A = -1 khi và chỉ khi x = -3/2
cho x>1 tim gtnn cua \(A=4x+\frac{25}{x+1}\)
Ta dùng bđt Cô si nhé :)
Do x > 1 nên x + 1 > 0. Từ đó ta có:
\(A=4\left(x+1\right)+\frac{25}{x+1}-4\)
Áp dụng bđt Cosi ta có : \(4\left(x+1\right)+\frac{25}{x+1}\ge2\sqrt{\frac{4\left(x+1\right).25}{\left(x+1\right)}}=20\Rightarrow A\ge20-4=16\)
Vậy GTNN của A là 16, khi x = 1,5.
Tim GTNN cua bieu thuc A=5x^2=9y^2-4x-12xy+9
A=5x^2+9y^2-4x-12xy+9
= x^2 - 4x + 4 + 9y^2 - 12xy + 4x^2 + 5
= (x-2)^2 + (3y - 2x)^2 +5 >= 5
Dấu "=" xẩy ra khi x-2=0 và 3y-2x=0
hay x = 2 và y = 4/3
Vậy GTNN của A là 5 khi x = 2 và y = 4/3
Bai 1: Tim GTLN hoac GTNN neu co cua cac bt
a, D = -x2 - 4x
\(D=-x^2-4x\)
\(=-\left(x^2+4x\right)\)
\(=-\left(x^2+2.x.2+2^2-4\right)\)
\(=-\left[\left(x+2\right)^2-4\right]\)
\(=-\left(x+2\right)^2+4\)
Vì \(-\left(x+2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+2\right)^2+4\le4\forall x\)
\(\Rightarrow D\le4\forall Dx\)
Dấu ''=" xảy ra khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Vậy \(MAX_D=4\) khi \(x=-2.\)
tim gtnn cua x^2+4x+2
tim gtnn cua x^2+4x+2
GIẢI:
\(x^2+4x+2\)
\(=\left(x^2+2.x.2+2^2\right)-2\)
\(=\left(x+2\right)^2-2\)
Nhận xét : \(\left(x+2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+2\right)^2-2>0\) với mọi x
Vậy GTNN của biểu thức là -2 đạt được khi :
\(\left(x+2\right)^2=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
Tim GTNN cua bieu thuc : B=x^2+xy+y^2-2x-3y+2019
Tìm GTNN , GTLn của biểu thức : A=\(\frac{8x+3}{4x^2+1}\)
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
tim gtnn cua x^2-4x+9
Gọi biểu thức trên là A.
\(A=x^2-4x+9\)
\(\Rightarrow A=x^2-4x+2+7\)
\(\Rightarrow A=\left(x-2\right)^2+7\)
Nhận xét: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+7\ge7\forall x\)
dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy \(minA=7\Leftrightarrow x=2\)
\(x^2-4x+9=x^2-2.x.2+2^2+5=\left(x-2\right)^2+5\)
Với mọi x ta có :
\(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2+5\ge5\)
Dấu "=" xảy ra khi :
\(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy ...
Ta có: \(x^2-4x+9=x^2-4x+4+5=\left(x-2\right)^2+5\)
Vì \(\left(x-2\right)^2\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow\left(x-2\right)^2+5\ge5\)
Dấu "=" xảy ra <=> \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy GTNN của x2-4x+9 bằng 5 khi và chỉ khi x = 2
tim GTNN va GTLN cua bieu thuc D=\(\frac{4x+3}{x^3+1}\)
GTLN và GTNN của biểu thức này đều ko tồn tại
D sẽ có giá trị lớn tới dương vô cùng khi \(x\) càng gần \(-1\) về bên trái (ví dụ, các giá trị như \(x=-1,00001\) chẳng hạn)
D có giá trị nhỏ tới âm vô cùng khi \(x\) càng gần \(-1\) về bên phải (ví duhj, các giá trị như \(x=-0,99999\))