Giải phương trình: \(\sqrt{3x+y}+xy=y^2+2\sqrt{y}\)
a) Giải phương trình trên tập số thực:
\(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
b) Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}x^2+2x\sqrt{xy}=y^2\sqrt{y}\\\left(4x^3+y^3+3x^2\sqrt{x}\right)\left(15\sqrt{x}+y\right)=3\sqrt{x}\left(y\sqrt{y}+x\sqrt{y}+4x\sqrt{x}\right)^2\end{matrix}\right.\) ; với \(x,y\inℝ\)
a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)
Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)
Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)
\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)
\(\Leftrightarrow b=a\)
Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)
\(\Leftrightarrow x^3-4x^2-6x+5=0\)
\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)
Giải hệ phương trình: \(\hept{\begin{cases}x^2+y^2+xy=9\\x+y+xy=3\end{cases}}\)
Giải phương trình \(\sqrt[3]{x^2+2}+\sqrt[3]{4x^2+3x-2}=\sqrt[3]{3x^2+x+5}+\sqrt[3]{2x^2+x-5}\)
Giải phương trình \(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
Câu 3 :
ĐKXĐ : \(x\ge1\)
\(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow3\left[x^2-\left(x-1\right)\right]=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow3\left(x-\sqrt{x-1}\right)\left(x+\sqrt{x-1}\right)=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow\left(x+\sqrt{x-1}\right)\left(x+\sqrt{x-1}-3x+3\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{x-1}\right)\left(4\sqrt{x-1}-2x\right)=0\)
Tới đây thì dễ rồi ^^
Giải hệ phương trình
\(\hept{\begin{cases}\frac{x^2+y^2}{xy}+\frac{2\sqrt{xy}}{x+y}=3\\\sqrt{x^2-3x+2}=\sqrt{10\left(y-2\right)}-\sqrt{y-3}\end{cases}}\)
giải hệ phương trình \(\hept{\begin{cases}2x^2-y^2+xy-5x+2=\sqrt{y-2x+1}-\sqrt{3-3x}\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\end{cases}}\)
Xét phương trình (1) ta có
\(2x^2-y^2+xy-5x+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)
\(\Leftrightarrow\left(x+y\right)\left(2x-y\right)-\left(x+y\right)-2\left(2x-y\right)+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)
\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\sqrt{y-2x+1}-\sqrt{3-3x}\)
Đặt \(\hept{\begin{cases}\sqrt{y-2x+1}=a\left(a\ge0\right)\\\sqrt{3-3x}=b\left(b\ge0\right)\end{cases}\Rightarrow a^2-b^2=x+y-2}\)thì ta có
\(PT\Leftrightarrow-a^2\left(a^2-b^2\right)=a-b\)
\(\Leftrightarrow\left(b-a\right)\left(a^3+a^2b+1\right)=0\)
Ta thấy là \(\left(a^3+a^2b+1\right)>0\)
\(\Rightarrow a=b\)
\(\Leftrightarrow y-2x+1=3-3x\)
\(\Leftrightarrow y=2-x\)
Thế vào pt (2) ta được
\(x^2-2+x-1=\sqrt{4x+2-x+5}-\sqrt{x+4-2x-2}\)
\(\Leftrightarrow x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)
Giải tiếp sẽ có được nghiệm \(\hept{\begin{cases}x=-2\\y=4\end{cases}}\)
phương trình (1) tách như sau:
(x+y)(2x−y)−(x+y)−2(2x−y)+2=√y−2x+1−√3−3x⇔(x+y−2)(2x−y−1)=√y−2x+1−√3−3x↔{√y−2x+1=a(a≥0)√3−3x=b(b≥0)⇒a2−b2=x+y−2;−a2=2x−y−1⇒(a2−b2)(−a2)=a−b⇔(a−b)(−a3−a2b−1)=0⇔a=b(−a3−a2b−1<0;a≥0;b≥0)→a=b⇔y−2x+1=3−3x⇔y=2−x(x+y)(2x−y)−(x+y)−2(2x−y)+2=y−2x+1−3−3x⇔(x+y−2)(2x−y−1)=y−2x+1−3−3x↔{y−2x+1=a(a≥0)3−3x=b(b≥0)⇒a2−b2=x+y−2;−a2=2x−y−1⇒(a2−b2)(−a2)=a−b⇔(a−b)(−a3−a2b−1)=0⇔a=b(−a3−a2b−1<0;a≥0;b≥0)→a=b⇔y−2x+1=3−3x⇔y=2−x
thế vaò (2) là ok
k cho mình nhé xin các bạn đó cho mình 1 cái có hại gì đến các bạn đâu
\(\hept{\begin{cases}2x^2-y^2+xy-5x+2=\sqrt{y-2x+1}-\sqrt{3-3x}\left(1\right)\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\left(2\right)\end{cases}}\)
\(ĐK:y-2x+1\ge0,4x+y+5\ge0,x+2y-2\ge0,x\le1\)
Trường hợp 1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\). Ta loại vì khi thay vào hệ thì ta thấy cặp nghiệm (x,y) = (1,1) không thỏa mãn
Trường hợp 2: \(\hept{\begin{cases}y-2x+1\ne0\\3-3x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ne1\\x\ne1\end{cases}}\)thì phương trình (1) tương đương: \(\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)
\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)
Do \(y-2x+1\ge0,\sqrt{3-3x}>0\)nên \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\forall x,y\)
Vì vậy \(x+y-2=0\Leftrightarrow y=2-x\)
Thay y = 2 - x vào (2), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)
\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)
\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)
Do \(x\le1\)nên \(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra \(x+2=0\Leftrightarrow x=-2\Rightarrow y=4\)(tmđk)
Vậy hệ có 1 nghiệm duy nhất là \(\left(x,y\right)=\left(-2,4\right)\)
giải hệ phương trình: \(\hept{\begin{cases}2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\end{cases}}\)
1) Giải hệ phương trình
\(\left\{{}\begin{matrix}3x^2+xy-4x+2y=2\\x\left(x+1\right)+y\left(y+1\right)=4\end{matrix}\right.\)
2) Giải phương trình
\(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
3) Tính giá trị của biểu thức
\(A=2x^3+3x^2-4x+2\)
Với \(x=\sqrt{2+\sqrt{\dfrac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\dfrac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
4) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
Chứng minh \(x=y\)
Câu 4:
Giả sử điều cần chứng minh là đúng
\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)
Vậy điều cần chứng minh là đúng
2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)
⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)
⇔ x = 5
Vậy S = {5}
Bài 1:
ĐKĐB suy ra $x(x+1)+y(y+1)=3x^2+xy-4x+2y+2$
$\Leftrightarrow 2x^2+x(y-5)+(y-y^2+2)=0$
Coi đây là PT bậc 2 ẩn $x$
$\Delta=(y-5)^2-4(y-y^2+2)=(3y-3)^2$Do đó:
$x=\frac{y+1}{2}$ hoặc $x=2-y$. Thay vào một trong 2 phương trình ban đầu ta thu được:
$(x,y)=(\frac{-4}{5}, \frac{-13}{5}); (1,1)$
Giải hệ phương trình:
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\end{cases}\le3}\)
Sửa đề:
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\left(1\right)\\4x+\frac{24\left(x^3+y^3\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}\ge12\left(2\right)\end{cases}}\)
Điều kiện: \(xy\ge0\)
Xét \(x,y\le0\)
\(4x+\frac{24\left(x^3+y^3\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}\ge0\)(loại)
Xét \(x,y\ge0\)
\(\left(2\right)-\left(1\right)\Leftrightarrow\left(x+y\right)+\frac{24\left(x+y\right)\left(x^2-xy+y^2\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}-10\sqrt{xy}\ge0\)
Ta có:
\(VT\le\left(x+y\right)+8\left(x+y\right)-4\left(x+y\right)-5\left(x+y\right)=0\)
\(\Rightarrow x=y\)
Làm tiếp
Câu trên sai rồi nha đọc cái này nè.
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\left(1\right)\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\le3\left(2\right)\end{cases}}\)
Điều kiện: \(xy\ge0\)
Xét \(x,y\le0\)
\(x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\le3\)(đúng)
Xét \(x,y\ge0\)
Ta có:
\(x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\ge x+\frac{4\left(x^3+y^3\right)}{x^2+y^2}-\sqrt{2\left(x^2+y^2\right)}\)
\(\ge x+2\sqrt{2\left(x^2+y^2\right)}-\sqrt{2\left(x^2+y^2\right)}=x+\sqrt{2\left(x^2+y^2\right)}\ge x+x+y=2x+y\)
\(\Rightarrow3\ge2x+y\left(3\right)\)
Ta có:
\(3x+10\sqrt{xy}-y=12\)
\(VT\le3x+5\left(x+y\right)-y=8x+4y\)
\(\Rightarrow12\le8x+4y\)
\(\Leftrightarrow3\le2x+y\left(4\right)\)
Từ (3) và (4) \(\Rightarrow x=y\)
Làm nốt
Giải hệ phương trình:
1. \(\hept{\begin{cases}2x^2+\sqrt{2x}=\left(x+y\right)y+\sqrt{x+y}\\\sqrt{x-1}+xy=\sqrt{y^2+21}\end{cases}}\)
2 \(\hept{\begin{cases}2x-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x-2y-2}\end{cases}}\)
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
Giải hệ phương trình
\(\hept{\begin{cases}3x^2-2y^2-xy+12x-17y-15=0\\\sqrt{2-x}+\sqrt{6-x-x^2}=y+\sqrt{2y+5}-\sqrt{y+4}\end{cases}}\)
\(\hept{\begin{cases}3x^2-2y^2-xy+12x-17y-15=0\left(1\right)\\\sqrt{2-x}+\sqrt{6-x-x^2}=y+\sqrt{2y+5}-\sqrt{y+4}\left(2\right)\end{cases}}\)
PT (1) \(\Leftrightarrow3x^2-x\left(y-12\right)-2y^2-17y-15=0\)
\(\Leftrightarrow\Delta=\left(y-12\right)^2+4\cdot3\cdot\left(2y^2+17y+15\right)\)
\(\Leftrightarrow\Delta=y^2-24y+144+24y^2+204y+180\)
\(\Leftrightarrow\Delta=25y^2+180y+324\)
\(\Delta=\left(5y+18\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{y-12+5y+18}{3}=2y+2\\x=\frac{y-12-5y-18}{3}=\frac{-4y}{3}-10\end{cases}}\)
\(x=2y+2\)
\(\Leftrightarrow\sqrt{2-x}+\sqrt{6-x-x^2}=y+\sqrt{2y+5}-\sqrt{y+4}\)
\(\Leftrightarrow\sqrt{-2y}+\sqrt{6-2y-2-4y^2-8y-4}=y+\sqrt{2y+5}-\sqrt{y+4}\)
\(\Leftrightarrow\sqrt{-2y}+\sqrt{-4y^2-10y+0}=y+\sqrt{2y+5}-\sqrt{y+6}\)
\(\Leftrightarrow y=0\Rightarrow x=2\)
Vậy (x;y)=(2;0)
Giải hệ phương trình:
\(2x^2-xy-y^2+2x+y=0\)
\(\sqrt{x+y}+\sqrt{3x+y}=2\)