TínhA:
A=1.3 + 3.5 + 5.7 + ...... + 45.47 + 47.49
TínhA:
A=1.3 + 3.5 + 5.7 + ...... + 45.47 + 47.49
\(A=1.3+3.5+5.7+...+45.47+47.49\)
\(A=\left(1.49\right)+\left(2.3\right)+\left(2.5\right)+\left(2.7\right)+.....+\left(2.47\right)\)
\(A=49+2.\left(3+5+7+....+47\right)\)
Bây giờ ta phải tìm SSH của :
\(3+7+...+47\)
Vậy SSH của tổng đó là :
(47-3):2+1=23 (SSH)
=> \(A=49+2.\left(\frac{\left(47+3\right).23}{2}\right)\)
\(A=49+2.575\)
\(A=49+1150\)
\(A=1199\)
Dạng này lầm đầu gặp
\(6A=1.3.6+3.5.6+5.6.7+......+47.49.6=3+1.3.5+3.5.\left(7-1\right)+5.7.\left(9-3\right)+.....+47.49.\left(51-45\right)=3+1.3.5-1.3.5+3.5.7-......+47.49.51-45.47.49=47.49.51+3=3+141423=141426\Rightarrow A=23571\)
ngồi cả chục phút bấm máy tính ( Dùng hệ đếm cơ số N cho dễ nhin )
VÀ ĐÂY LÀ KẾT QUẢ ( ĐÃ KIỄM TRA KO SAI MỘT BIỂU THỨC , KO TIN AE CÓ THỂ DÙNG MÁY TÍNH KIỂM TRA )
3/1.3+3/3.5+3/5.7+......+3/47.49
3/1.3+3/3.5+3/5.7+......+3/47.49
=1/1-1/3+1/3-1/5+1/5-1/7+........+1/47-1/49
=1/1-1/49
=49/49-1/49
=48/49
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +......+ 1/47 - 1/49
= 1 - 1/49
= 48/49 nha!
*** Ai k mk mk k lại !!***
Tính nhanh các tổng sau :
S=\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}+\)\(\dfrac{2}{5.7}+\)...+\(\dfrac{2}{47.49}\)
tính tổng có quy luật :
H=\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+......+\(\dfrac{1}{47.49}\)+\(\dfrac{1}{49.51}\)
\(2H=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{49.51}\)
\(2H=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{51-49}{49.51}\)
\(2H=\dfrac{3}{1.3}-\dfrac{1}{1.3}+\dfrac{5}{3.5}-\dfrac{3}{3.5}+...+\dfrac{51}{49.51}-\dfrac{49}{49.51}\)
\(2H=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\)
\(2H=1-\dfrac{1}{51}\)
\(2H=\dfrac{50}{51}\)
\(H=\dfrac{25}{51}\)
F=49/2.9+49/9.16+49/16.23+...+49/65.72
G=3/1.3+3/3.5+3/5.7+..+3/47.49
\(F=\dfrac{49}{2.9}+\dfrac{49}{9.16}+............+\dfrac{49}{65.72}\)
\(\Leftrightarrow F=\dfrac{7^2}{2.9}+\dfrac{7^2}{9.16}+............+\dfrac{7^2}{65.72}\)
\(\Leftrightarrow F=7\left(\dfrac{7}{2.9}+\dfrac{7}{9.16}+.............+\dfrac{7}{65.72}\right)\)
\(\Leftrightarrow F=7\left(\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...........+\dfrac{1}{65}-\dfrac{1}{75}\right)\)
\(\Leftrightarrow F=7\left(\dfrac{1}{2}-\dfrac{1}{72}\right)\)
\(\Leftrightarrow F=7.\dfrac{35}{72}=\dfrac{245}{72}\)
\(G=\dfrac{3}{1.3}+\dfrac{3}{3.5}+...........+\dfrac{3}{47.49}\)
\(\Leftrightarrow G=\dfrac{3.2}{1.3.2}+\dfrac{3.2}{3.5.2}+........+\dfrac{3.2}{47.49}\)
\(\Leftrightarrow G=\dfrac{3}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+..........+\dfrac{2}{47.49}\right)\)
\(\Leftrightarrow G=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
\(\Leftrightarrow G=\dfrac{3}{2}\left(1-\dfrac{1}{49}\right)\)
\(\Leftrightarrow G=\dfrac{3}{2}.\dfrac{48}{49}=\dfrac{72}{49}\)
bài NÀY KHÓ QUÁ CÁC BN
bài 1 . Tính
c. C=5/1.3+5/3.5+5/5.7+...+5/45.47
"." là nhân
\(C=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{45.47}\)
\(C=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{45}-\frac{1}{47}\right)\)
\(C=\frac{5}{2}.\left(1-\frac{1}{47}\right)\)
\(C=\frac{5}{2}.\frac{46}{47}\)
\(C=\frac{115}{47}\)
\(C=\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+...+\frac{5}{45\cdot47}\)
\(C=\frac{5}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{45\cdot47}\right)\)
\(C=\frac{5}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{45}-\frac{1}{47}\right)\)
\(C=\frac{5}{2}\cdot\left(1-\frac{1}{47}\right)\)
\(C=\frac{5}{2}\cdot\frac{46}{47}\)
\(C=\frac{115}{47}\)
Rút gọn Bt
A= \(\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-.......-\frac{1}{47.49}-\frac{1}{49.51}\)
theo công thức, ta tính đc:
A = 1- 1/3 + 1/3 - 1/5 + 1/5 -1/7 +..... + 1/49 - 1/51
=> A bằng 1- 1/51 ( các cặp phân số đối nhau thì lược bỏ như - 1/3 và + 1/3 )
theo bài ra ta có:
A=1-1/3+1/3-1/5+1/5-1/7+......+1/47-1/49+1/49-1/51
A=1-1/51
\(\frac{1}{1.3}\)+\(\frac{1}{3.5}\)+\(\frac{1}{5.7}\)+.........+\(\frac{1}{47.49}\)=\(\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{49}\right)=\frac{1}{x}\Rightarrow x=\frac{49}{24}\)
\(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}.\left(1-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{24}{49}=\frac{1}{x}\)\(\Rightarrow x=\frac{49}{24}\)
giúp mik vs
\(\dfrac{4^2}{1.3}+\dfrac{4^2}{3.5}+\dfrac{4^2}{5.7}+.....+\dfrac{4^2}{45.47}.\dfrac{1-3-5-..-49}{8}\) bài này tính nha