a) 3 √𝑥−3=12
b) √16(1−2𝑥)−8=0
c) √4(9−6𝑥+𝑥2)−12= 0
3/ Tìm x,biết:
a) 3 √𝑥−3=12
b) √16(1−2𝑥)−8=0
c) √4(9−6𝑥+𝑥2)−12= 0
a) \(3\sqrt{x-3}=12\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}=4\)
\(\Leftrightarrow x-3=16\Leftrightarrow x=19\left(tm\right)\)
b) \(\sqrt{16\left(1-2x\right)}-8=0\left(đk:x\le\dfrac{1}{2}\right)\)
\(\Leftrightarrow4\sqrt{1-2x}=8\Leftrightarrow\sqrt{1-2x}=2\)
\(\Leftrightarrow1-2x=4\Leftrightarrow x=-\dfrac{3}{2}\left(tm\right)\)
c) \(\sqrt{4\left(9-6x+x^2\right)}-12=0\)
\(\Leftrightarrow2\sqrt{\left(x-3\right)^2}=12\)
\(\Leftrightarrow\left|x-3\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=6\\x-3=-6\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-3\end{matrix}\right.\)
a: ta có: \(3\sqrt{x-3}=12\)
\(\Leftrightarrow x-3=16\)
hay x=19
b: Ta có: \(\sqrt{16\left(1-2x\right)}-8=0\)
\(\Leftrightarrow1-2x=4\)
\(\Leftrightarrow2x=-3\)
hay \(x=-\dfrac{3}{2}\)
a) 2𝑥(𝑥2−9)=0
b) 2𝑥(𝑥−2021)−𝑥+2021=0
c) 4𝑥2−16𝑥=0
d) (3𝑥+7)2−(𝑥+1)2=0
\(a,\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ b,\Leftrightarrow\left(2x-1\right)\left(x-2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2021\end{matrix}\right.\\ c,\Leftrightarrow4x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ d,\Leftrightarrow\left(3x+7-x-1\right)\left(3x+7+x+1\right)=0\\ \Leftrightarrow\left(2x+6\right)\left(4x+8\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
Tìm x , biết rằng
a) 𝑥3 - 64𝑥 = 0
b) 𝑥3 - 4𝑥2 = -4𝑥
c)𝑥2 - 16 - (𝑥 - 4) = 0
d)(2𝑥 + 1)2 = (3 + 𝑥)
e)𝑥3 - 6𝑥2 + 12𝑥 - 8 = 0
f)𝑥3 - 7𝑥 - 6 = 0
a) x³ - 64x = 0
x(x² - 64) = 0
x(x - 8)(x + 8) = 0
x = 0 hoặc x - 8 = 0 hoặc x + 8 = 0
*) x - 8 = 0
x = 8
*) x + 8 = 0
x = -8
Vậy x = -8; x = 0; x = 8
b) x³ - 4x² = -4x
x³ - 4x² + 4x = 0
x(x² - 4x + 4) = 0
x(x - 2)² = 0
x = 0 hoặc (x - 2)² = 0
*) (x - 2)² = 0
x - 2 = 0
x = 2
Vậy x = 0; x = 2
c) x² - 16 - (x - 4) = 0
(x - 4)(x + 4) - (x - 4) = 0
(x - 4)(x + 4 - 1) = 0
(x - 4)(x + 3) = 0
x - 4 = 0 hoặc x + 3 = 0
*) x - 4 = 0
x = 4
*) x + 3 = 0
x = -3
Vậy x = -3; x = 4
d) (2x + 1)² = (3 + x)²
(2x + 1)² - (3 + x)² = 0
(2x + 1 - 3 - x)(2x + 1 + 3 + x) = 0
(x - 2)(3x + 4) = 0
x - 2 = 0 hoặc 3x + 4 = 0
*) x - 2 = 0
x = 2
*) 3x + 4 = 0
3x = -4
x = -4/3
Vậy x = -4/3; x = 2
e) x³ - 6x² + 12x - 8 = 0
(x - 2)³ = 0
x - 2 = 0
x = 2
f) x³ - 7x - 6 = 0
x³ + 2x² - 2x² - 4x - 3x - 6 = 0
(x³ + 2x²) - (2x² + 4x) - (3x + 6) = 0
x²(x + 2) - 2x(x + 2) - 3(x + 2) = 0
(x + 2)(x² - 2x - 3) = 0
(x + 2)(x² + x - 3x - 3) = 0
(x + 2)[(x² + x) - (3x + 3)] = 0
(x + 2)[x(x + 1) - 3(x + 1)] = 0
(x + 2)(x + 1)(x - 3) = 0
x + 2 = 0 hoặc x + 1 = 0 hoặc x - 3 = 0
*) x + 2 = 0
x = -2
*) x + 1 = 0
x = -1
*) x - 3 = 0
x = 3
Vậy x = -1; x = -1; x = 3
a,x\(^3\)-64=0
x\(^3\) =64
=>x=3
b,x\(^3\)-4x\(^2\)=-4x
x\(^3\)-4x\(^2\)+4x=0
x(x\(^2\)-4x+4)=0
x(x-2)\(^2\)=)
TH1:x=0
TH2:x-2=0
=>x=2
c,x\(^2\)-16-(x-4)=0
(x+4)(x-4)-(x-4)=0
(x-4)(x+4-1)=0
(x-4)(x+3)=0
TH1:x-4=0
=>x=4
TH2:x+3=0
=>x=-3
d,(2x+1).2=3+x
4x+2-3-x=0
3x-1=0
x=\(\dfrac{1}{3}\)
e,x\(^3\)-6x\(^2\)+12x-8=0
(x-2)\(^3\)=0
=>x-2=0
=>x=2
f,x\(^3\)-7x+6=0
x\(^3\)-x-6x+6=0
x(x\(^2\)-1)-6(x-1)=0
x(x+1)(x-1)-6(x-1)=0
(x-1)(x\(^2\)+x-6)=0
TH1:x-1=0
=>x=1
TH2:x\(^2\)+x-6=0
x\(^2\)+3x-2x-6=0
x(x+3)-2(x+3)=0
(x+3)(x-2)=0
=>x+3=0 =>x-2=0
+>x=-3 =>x=2
d,(2x+1)\(^2\)=(3+x)\(^2\)
4x\(^2\)+4x+1-9-6x-x\(^2\)=0
3x\(^2\)-2x-8=0
3x\(^2\)-6x+4x-8=0
3x(x-2)+4(x-2)=0
(3x+4)(x-2)=0
TH1:3x+4=0 TH2:x-2=0
=>x=\(\dfrac{-4}{3}\) =>x=2
b) (𝑥+7)−25=13 c) 𝑥2=49 d) 2𝑥−49=5.32
c) 𝑥2=49
d) 2𝑥−49=5.32
e) 140:(𝑥−8)=7
f) 4.(𝑥−3)=72−13
g) 𝑥3=27
h) (2𝑥+1)3=125
\(b,\Leftrightarrow x+7=38\Leftrightarrow x=31\\ c,\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\\ d,\Leftrightarrow2x=160-49=111\Leftrightarrow x=\dfrac{111}{2}\\ e,\Leftrightarrow x-8=20\Leftrightarrow x=28\\ f,\Leftrightarrow x-3=\dfrac{59}{4}\Leftrightarrow x=\dfrac{71}{4}\\ g,\Leftrightarrow x=3\\ h,\Leftrightarrow2x+1=5\Leftrightarrow2x=4\Leftrightarrow x=2\)
a) 2+3𝑥=−15−19
b) 2𝑥−5=−17+12
c) 10−𝑥−5=−5−7−11
d) |𝑥|−3=0
e) (7−|𝑥|).(2𝑥−4)=0
f) −10−(𝑥−5)+(3−𝑥)=−8
g) 10+3(𝑥−1)=10+6𝑥
h) (𝑥+1)(𝑥−2)=0
Bài 3. Tìm các số nguyên x và y sao cho:
a) (𝑥+2)(𝑦−1)=3
b) (3−𝑥)(𝑥𝑦+5)=−1
a) 2+3𝑥=−15−19
3x= -15 - 19 -2
3x = -36
x= -12
b) 2𝑥−5=−17+12
2x = -17 + 12 + 5
2x = 0
x = 0
c) 10−𝑥−5=−5−7−11
-x = -5 - 7 - 11 - 10 + 5
-x = -28
x = 28
d) |𝑥|−3=0
|x|= 3
x = \(\pm\)3
e) (7−|𝑥|).(2𝑥−4)=0
th1 : ( 7 - | x| ) = 0
|x|= 7
x=\(\pm\)7
th2: ( 2x-4) = 0
2x = 4
x= 2
f) −10−(𝑥−5)+(3−𝑥)=−8
-10 - x + 5 + 3 - x = -8
-10 + 5 + 3 + 8 = 2x
2x= 6
x = 3
g) 10+3(𝑥−1)=10+6𝑥
10 + 3x - 3 = 10 + 6x
3x - 6x = 10 - 10 + 3
-3x = 3
x= -1
h) (𝑥+1)(𝑥−2)=0
th1: x+1= 0
x = -1
x-2=0
x=2
hok tốt!!!
1) Làm tính nhân
a) 𝑥.(𝑥2–5)
b) 3𝑥𝑦(𝑥2−2𝑥2𝑦+3)
c) (2𝑥−6)(3𝑥+6)
d) (𝑥+3𝑦)(𝑥2−𝑥𝑦)
2)Tính (áp dụng Hằng đẳng thức)
a) (2𝑥+5)(2𝑥−5)
b) (𝑥−3)^2
c) (4+3𝑥)^2
d) (𝑥−2𝑦)^3
e) (5𝑥+3𝑦)^3
f) (5−𝑥)(25+5𝑥+𝑥^2)
g) (2𝑦+𝑥)(4𝑦^2−2𝑥𝑦+𝑥^2)
3)Phân tích các đa thức sau thành nhân tử
a) 𝑥^2+2𝑥
b) 𝑥^2−6𝑥+9
c) 5(𝑥–𝑦)–𝑦(𝑦–𝑥)
d) 2𝑥−𝑦^2+2𝑥𝑦−𝑦
a) 6𝑥^3𝑦^4+12𝑥^2𝑦^3−18𝑥^3𝑦^2
\(1,\\ a,=x^3-5x\\ b,=3x^3y-6x^3y^2+9xy\\ c,=6x^2-6x-36\\ d,=x^3+2x^2y-3xy^2\\ 2,\\ a,=4x^2-25\\ b,=x^2-6x+9\\ c,=9x^2+24x+16\\ d,=x^3-6x^2y+12xy^2-8y^3\\ e,=125x^3+225x^2y+135xy^2+27y^3\\ f,=125-x^3\)
\(g,=8y^3+x^3\\ 3,\\ a,=x\left(x+2\right)\\ b,=\left(x-3\right)^2\\ c,=\left(x-y\right)\left(y+5\right)\\ d,=2x\left(y+1\right)-y\left(y+1\right)=\left(2x-y\right)\left(y+1\right)\\ e,=6x^2y^2\left(xy^2+2y-3x\right)\)
Bài 8: Tìm giá trị nhỏ nhất của
A=√𝑥2 −4𝑥+25 ,
C=3+√𝑥 √𝑥+1
B=√𝑥2 −6𝑥+30
D=√𝑥2 −4𝑥+7+√2
\(A=\sqrt{x^2-4x+25}=\sqrt{\left(x-2\right)^2+21}\)
Ta có : \(\left(x-2\right)^2\ge0\) => \(\left(x-2\right)^2+21\ge21\left(\forall x\right)\) => \(\sqrt{\left(x-2\right)^2+21}\ge\sqrt{21}\left(\forall x\right)\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(\sqrt{\left(x-2\right)^2}=0\)
\(\Leftrightarrow\) \(x-2=0\)
\(\Leftrightarrow\) x = 2
Vậy giá trị nhỏ nhất của A là : \(\sqrt{21}\) khi x = 2
\(B=\sqrt{x^2-6x+30}=\sqrt{\left(x-3\right)^2+21}\)
Vì \(\sqrt{\left(x-3\right)^2}\ge0\left(\forall x\right)\)=> \(\sqrt{\left(x-3\right)^2+21}\ge\sqrt{21}\left(\forall x\right)\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\) \(x-3=0\)
\(\Leftrightarrow\) \(x=3\)
Vậy giá trị nhỏ nhất của B là : \(\sqrt{21}\) khi x = 3
\(D=\sqrt{x^2-4x+7}+\sqrt{2}=\sqrt{\left(x-2\right)^2+3}+\sqrt{2}\)
Vì
Bài 8: Tìm giá trị nhỏ nhất của
A=√𝑥2 −4𝑥+25 ,
C=3+√𝑥 √𝑥+1
B=√𝑥2 −6𝑥+30
D=√𝑥2 −4𝑥+7+√2
bạn viết câu hỏi dưới dạng trực quan để mn dễ hiểu nhé!
1) Làm tính nhân
a) 𝑥. (𝑥2 – 5) | b) 3𝑥𝑦(𝑥2 − 2𝑥2𝑦 + 3) |
c) (2𝑥 − 6)(3𝑥 + 6) 2) Tính (áp dụng Hằng đẳng thức) | d) (𝑥 + 3𝑦)(𝑥2 − 𝑥𝑦) |
a) (2𝑥 + 5)(2𝑥 − 5)
| b) (𝑥 − 3)2 c) (4 + 3𝑥)2 |
d) (𝑥 − 2𝑦)3 | e) (5𝑥 + 3𝑦)3 |
f) (5 − 𝑥)(25 + 5𝑥 + 𝑥2) | g) (2𝑦 + 𝑥)(4𝑦2 − 2𝑥𝑦 + 𝑥2) |
3) Phân tích các đa thức sau thành nhân tử
a) 𝑥2 + 2𝑥 | b) 𝑥2 − 6𝑥 + 9 |
c) 5(𝑥 – 𝑦) – 𝑦(𝑦 – 𝑥) | d) 2𝑥 − 𝑦2 + 2𝑥𝑦 − 𝑦 |
a) 6𝑥3𝑦4 + 12𝑥2𝑦3 − 18𝑥3𝑦2 | b) 𝑥2 − 2𝑥𝑦 + 𝑦2 − 36 |
c) 5𝑥2 + 3𝑥 − 5𝑥𝑦 − 3𝑦 | d) 𝑥2 − 5𝑥 − 6 |
e) 𝑥3 − 3𝑥2 − 4𝑥 + 12 4) Rút gọn biểu thức | f) 𝑥3 + 27 + (𝑥 + 3)(𝑥 − 9) |
a) (𝑥2 + 1)(𝑥 − 3) − (𝑥 − 3)(𝑥2 + 3𝑥 + 9)
b) (𝑥 + 2)2 + 𝑥(𝑥 + 5)
c) (5𝑥 + 4𝑦)(5𝑥 − 4𝑦) − 24𝑥2 + 15𝑦2 5) Tìm x, biết:
a) 2𝑥(𝑥2 − 9) = 0 b) 2𝑥(𝑥 − 2021) − 𝑥 + 2021 = 0
c) 4𝑥2 − 16𝑥 = 0 d) (3𝑥 + 7)2 − (𝑥 + 1)2 = 0
6) Làm tính chia
a) 14𝑥3𝑦 ∶ 10𝑥2 b) (𝑥3 − 27) ∶ (3 − 𝑥)
c) 8𝑥3𝑦3𝑧 ∶ 6𝑥𝑦3 d) (𝑥2 − 9𝑦2 + 4𝑥 + 4) ∶ (𝑥 + 3𝑦 + 2)
7) a) Tìm giá trị nhỏ nhất của biểu thức: 𝐴 = (𝑥 − 1)(𝑥 − 3) + 11
b) Tìm giá trị lớn nhất của biểu thức: 𝐵 = 5 − 4𝑥2 + 4𝑥
c) Cho 𝑥 – 𝑦 = 2. Tìm giá trị lớn nhất của đa thức 𝐵 = 𝑦2 − 3𝑥2
8) Tìm số để đa thức 𝑥3 − 3𝑥2 + 5𝑥 + 𝑎 chia hết cho đa thức 𝑥 − 2 9) Áp dụng kết quả bài tập 31 – SGK – tr.16, hãy:
a) Tính 𝑎3 − 𝑏3 biết 𝑎. 𝑏 = 8 và 𝑎 − 𝑏 = −6
b) Tính 𝑎3 + 𝑏3 biết 𝑎. 𝑏 = −12 và 𝑎 + 𝑏 = 1
c) Tính 𝑎3 + 𝑏3 biết 𝑎2 + 𝑏2 = 30 và 𝑎 + 𝑏 = 2
5) a) 2x(x^2 - 9) = 0
<=> 2x(x - 3)(x + 3) = 0
<=> x = 0 hoặc x = 3 hoặc x = -3
b) 2x(x - 2021) - x + 2021 = 0
<=> (2x - 1)(x - 2021) = 0
<=> 2x - 1 = 0 hoặc x - 2021 = 0
<=> x = 1/2 hoặc x = 2021
c) 4x^2 - 16x = 0
<=> 4x(x - 4) = 0
<=> x = 0 hoặc x = 4
d) (3x + 7)^2 - (x + 1)^2 = 0
<=> (3x + 7 + x + 1)(3x + 7 - x - 1) = 0
<=> (4x + 8)(2x + 6) = 0
<=> 4x + 8 = 0 hoặc 2x + 6 = 0
<=> x = -2 hoặc x = -3