Tính A=\(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
Tính:
a)\(\sqrt[3]{125}.\sqrt[3]{\dfrac{16}{10}}.\sqrt[3]{-0,5}\)
b) \(\dfrac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)
c) \(\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}\)
d) \(\dfrac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}\)
e) E=\(\sqrt[3]{2+10\sqrt{\dfrac{1}{27}}}+\sqrt[3]{2-10\sqrt{\dfrac{1}{27}}}\)
a.
\(\sqrt[3]{125}.\sqrt[3]{\frac{16}{10}}.\sqrt[3]{-0,5}=\sqrt[3]{125.\frac{16}{10}.(-0,5)}=\sqrt[3]{-100}\)
b.
\(=1+\frac{1}{\sqrt[3]{4}+\sqrt[3]{2}+1}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2}-1)(\sqrt[3]{4}+\sqrt[3]{2}+1)}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2})^3-1}=1+\sqrt[3]{2}-1=\sqrt[3]{2}\)
c.
\(\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}=\sqrt{3}+\sqrt[3]{(\sqrt{3}+1)^3}=\sqrt{3}+\sqrt{3}+1=2\sqrt{3}+1\)
d.
\(\frac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}=\frac{(\sqrt{3}+1)^2}{\sqrt[3]{(\sqrt{3}+1)^3}}=\frac{(\sqrt{3}+1)^2}{\sqrt{3}+1}=\sqrt{3}+1\)
e.
Đặt \(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}=a; \sqrt[3]{2-10\sqrt{\frac{1}{27}}}=b\)
Khi đó:
$a^3+b^3=4$
$ab=\frac{2}{3}$
$E^3=(a+b)^3=a^3+b^3+3ab(a+b)$
$E^3=4+2E$
$E^3-2E-4=0$
$E^2(E-2)+2E(E-2)+2(E-2)=0$
$(E-2)(E^2+2E+2)=0$
Dễ thấy $E^2+2E+2>0$ nên $E-2=0$
$\Leftrightarrow E=2$
thực hiện phép tính
A=\(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2-\sqrt{2-\sqrt{3}}}}\)
B=\(\dfrac{6+4\sqrt{2}}{\sqrt{2+\sqrt{6+4\sqrt{2}}}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\)
a, Sửa đề:
\(A=\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{2-2-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{2-2+\sqrt{3}}\)
\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}-\sqrt{2}+\sqrt{2+\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{2\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{2\sqrt{6-3\sqrt{3}}}{3}\)
Tính:
a/ \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
b/ \(\frac{\sqrt{20+8\sqrt{3}}+\sqrt{20-8\sqrt{3}}}{\sqrt{5+2\sqrt{3}}-\sqrt{5-2\sqrt{3}}}-\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\$\sqrt{4+\sqrt{3}}-\sqrt{4-\sqrt{3}}}\)
Tính
1, a = \(\sqrt[3]{45+26\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
2, x = \(\sqrt[3]{4+\sqrt{80}-\sqrt[3]{\sqrt{80}-4}}\)
3, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
4, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
5, \(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
Thực hiến phép tính :
a, \(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}\)
b, \(\dfrac{2}{3\sqrt{2}-4}-\dfrac{2}{3\sqrt{2}+4}\)
c, \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
d, \(\dfrac{3}{2\sqrt{2}-3\sqrt{3}}-\dfrac{3}{2\sqrt{2}+3\sqrt{3}}\)
e, \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
g, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
\(a,=\dfrac{3-\sqrt{2}+3+\sqrt{2}}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}=\dfrac{6}{-1}=-6\\ b,=\dfrac{6\sqrt{2}+8-6\sqrt{2}+8}{\left(3\sqrt{2}-4\right)\left(3\sqrt{2}+4\right)}=\dfrac{16}{2}=8\\ c,=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2+\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\\ =\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}=\dfrac{16}{2}=8\)
\(d,=\dfrac{6\sqrt{2}+9\sqrt{3}-6\sqrt{2}+9\sqrt{3}}{\left(2\sqrt{2}-3\sqrt{3}\right)\left(2\sqrt{2}+3\sqrt{3}\right)}=\dfrac{18\sqrt{3}}{-19}=\dfrac{-18\sqrt{3}}{19}\\ e,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\\ =\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\\ =\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\\ =\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)
Tính
a) \(\dfrac{1}{3\sqrt{2}-2\sqrt{3}}-\dfrac{1}{2\sqrt{3}+3\sqrt{2}}\)
b) \(\dfrac{4\sqrt{3}-8}{2\sqrt{3}-4}-\dfrac{1}{\sqrt{5}-2}\)
a) \(\dfrac{1}{3\sqrt{2}-2\sqrt{3}}-\dfrac{1}{2\sqrt{3}+3\sqrt{2}}\)
\(=\dfrac{1}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{6}}-\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}}\)
\(=\dfrac{\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}}{\sqrt{6}}\)
\(=\dfrac{2\sqrt{2}}{\sqrt{6}}\)
\(=\dfrac{2\sqrt{3}}{3}\)
b) \(\dfrac{4\sqrt{3}-8}{2\sqrt{3}-4}-\dfrac{1}{\sqrt{5}-2}\)
\(=\dfrac{4\left(\sqrt{3}-2\right)}{2\left(\sqrt{3}-2\right)}-\dfrac{\sqrt{5}+2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)
\(=\dfrac{4}{2}-\dfrac{\sqrt{5}+2}{5-4}\)
\(=2-\sqrt{5}-2\)
\(=-\sqrt{5}\)
Tính
a) \(\dfrac{3}{\sqrt{7}-4}+\dfrac{4+\sqrt{7}}{3}\)
b) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}\right):\dfrac{1}{2\sqrt{3}}\)
\(a,\dfrac{3}{\sqrt{7}-4}+\dfrac{4+\sqrt{7}}{3}\)
\(=\dfrac{9}{3\left(\sqrt{7}-4\right)}+\dfrac{\left(\sqrt{7}-4\right)\left(\sqrt{7}+4\right)}{3\left(\sqrt{7}-4\right)}\)
\(=\dfrac{9+7-16}{3\left(\sqrt{7}-4\right)}\)
\(=0\)
\(b,\left(\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}\right):\dfrac{1}{2\sqrt{3}}\)
\(=\left[\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}\right]\cdot2\sqrt{3}\)
\(=\left(\sqrt{2}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}\right)\cdot2\sqrt{3}\)
\(=\left(\sqrt{2}+\sqrt{3}-\sqrt{2}\right)\cdot2\sqrt{3}\)
\(=\sqrt{3}\cdot2\sqrt{3}\)
\(=6\)
#\(Toru\)
Thực hiện phép tính ( rút gọn biểu thức )
a) \(\sqrt{2}\left(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\right)\)
b) \(\sqrt{2-\sqrt{3}}\) - \(\sqrt{2+\sqrt{3}}\)
a) \(\sqrt{2}\left(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\right)\)
\(=\sqrt{2\cdot\left(4+\sqrt{7}\right)}+\sqrt{2\cdot\left(4-\sqrt{7}\right)}\)
\(=\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}\right)^2+2\cdot\sqrt{7}\cdot1+1^2}+\sqrt{\left(\sqrt{7}\right)^2-2\cdot\sqrt{7}\cdot1+1^2}\)
\(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=\left|\sqrt{7}+1\right|+\left|\sqrt{7}-1\right|\)
\(=\sqrt{7}+1+\sqrt{7}-1\)
\(=2\sqrt{7}\)
b) \(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
\(=\dfrac{\sqrt{2}\cdot\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2\cdot\left(2-\sqrt{3}\right)}-\sqrt{2\cdot\left(2+\sqrt{3}\right)}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)
\(=\dfrac{\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{ }\)
\(=-\dfrac{2}{\sqrt{2}}\)
\(=-\sqrt{2}\)
Tính A = \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
\(A=\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
\(A=\frac{2+\sqrt{3}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{2-\sqrt{3}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(A=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-\sqrt{3}+1}\)
\(A=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(A=\frac{\left(2+\sqrt{3}\right)\left(\sqrt{3}-1\right)+\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(A=\frac{2\sqrt{3}-2+3-\sqrt{3}+2\sqrt{3}+2-3-\sqrt{3}}{\sqrt{3}\left(3-1\right)}\)
\(A=\frac{2\sqrt{3}}{2\sqrt{3}}=1\)
\(A=\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}.\)
\(=\frac{\left(2+\sqrt{3}\right)\left(2-\sqrt{4+2\sqrt{3}}\right)}{\left(2+\sqrt{4+2\sqrt{3}}\right)\left(2-\sqrt{4+2\sqrt{3}}\right)}+\frac{\left(2-\sqrt{3}\right)\left(2+\sqrt{4-2\sqrt{3}}\right)}{\left(2-\sqrt{4-2\sqrt{3}}\right)\left(2+\sqrt{4-2\sqrt{3}}\right)}\)
\(=\frac{4-2\sqrt{4+2\sqrt{3}}+2\sqrt{3}-\sqrt{3\left(4+2\sqrt{3}\right)}}{4-4-2\sqrt{3}}+\frac{4+2\sqrt{4-2\sqrt{3}}-2\sqrt{3}-\sqrt{3\left(4-2\sqrt{3}\right)}}{4-4+2\sqrt{3}}\)
\(=\frac{4+2\sqrt{4-2\sqrt{3}}-2\sqrt{3}-\sqrt{3\left(4-2\sqrt{3}\right)}}{2\sqrt{3}}-\frac{4-2\sqrt{4+2\sqrt{3}}+2\sqrt{3}-\sqrt{3\left(4+2\sqrt{3}\right)}}{2\sqrt{3}}\)
\(=\frac{4+2\sqrt{4-2\sqrt{3}}-2\sqrt{3}-\sqrt{3\left(4-2\sqrt{3}\right)}-4+2\sqrt{4+2\sqrt{3}}-2\sqrt{3}+\sqrt{3\left(4+2\sqrt{3}\right)}}{2\sqrt{3}}\)
\(=\frac{2\sqrt{4-2\sqrt{3}}-2\sqrt{3}-\sqrt{3\left(4-2\sqrt{3}\right)}+2\sqrt{4+2\sqrt{3}}-2\sqrt{3}+\sqrt{3\left(4+2\sqrt{3}\right)}}{2\sqrt{3}}\)
Tính:
\(A=\sqrt{20}-2\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
\(B=4\sqrt{\left(\sqrt{3}-1\right)^2}+2\sqrt{12}+4\sqrt{\dfrac{1}{2}}\)
\(C=\left(3+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(3-\dfrac{3+\sqrt{3}}{1+\sqrt{3}}\right)\)
\(D=\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}\)
a) Ta có: \(A=\sqrt{20}-2\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
\(=2\sqrt{5}-6\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)
\(=-4\sqrt{5}+15\sqrt{2}\)
b) Ta có: \(B=4\sqrt{\left(\sqrt{3}-1\right)^2}+2\sqrt{12}+4\sqrt{\dfrac{1}{2}}\)
\(=4\left(\sqrt{3}-1\right)+2\cdot2\sqrt{3}+\dfrac{4}{\sqrt{2}}\)
\(=4\sqrt{3}-4+4\sqrt{3}+2\sqrt{2}\)
\(=8\sqrt{3}+2\sqrt{2}-4\)
c) Ta có: \(C=\left(3+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(3-\dfrac{3+\sqrt{3}}{1+\sqrt{3}}\right)\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)
=9-3
=6
d) Ta có: \(D=\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}\)
\(=2-\sqrt{3}+2+\sqrt{3}\)
=4