\(A=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
\(A=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
Tính giá trị của biểu thức: \(M=\dfrac{1+ab}{a+b}-\dfrac{1-ab}{a-b}\) với \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\); \(a=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
a. P= (\(3+\sqrt{2}+\sqrt{6}\))(\(\sqrt{6-3\sqrt{3}}\))
b. A=(\(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\)): (\(\sqrt{6}+11\))
c. B= \(\frac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}\)-\(\sqrt{8}\)
d. C= \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
đ. D=\(\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
e. E= \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
ê. G= \(\sqrt{4+5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
g. H=\(\frac{2\sqrt{4+\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
i. I=\(\sqrt{\frac{4-\sqrt{7}}{4+\sqrt{7}}}+\sqrt{\frac{4+\sqrt{7}}{4-\sqrt{7}}}\)
k. K=\(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Rút gọn biểu thức:
\(a,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(b,\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}+\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\)
Cho
\(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{3}\)
\(\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)\left(c+2b\right)}=3\)
Hãy tính \(\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
1, cho \(M=\dfrac{1}{2-\sqrt{3}}\) và \(N=\sqrt{6}.\sqrt{2}\) kết quả của phét tính 2M - N bằng
a, \(4+4\sqrt{3}\) b, \(2+\sqrt{3}\) c,4 d, \(2\sqrt{3}\)
2, với x>6 thì biểu thức \(-x+\sqrt{\left(6-x\right)^2}\) rút gọn đc kết quả bằng
a, -2x+6 b,2x-6 c -6 d, 6
3, cho hàm số y=f(x)=\(\dfrac{1}{3}\) x -1 khẳng định nào sao đây đúng
a, f(2)<f(3) b, f(-3)< f(-4) c, f (-4)>f(2) d, f(2)<(0)
4,cho tam giác ABC đều cạch a nội tiếp đg tròn (O;R) giá trị của R bằng
a, \(R=\dfrac{a\sqrt{3}}{3}\) b, R=a c, \(R=a\sqrt{3}\) d, \(R=\dfrac{a\sqrt{3}}{2}\)
Tính:
\(a,\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
\(b,\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Rút gọn
a, \(\frac{2\sqrt{3-1}}{\sqrt{15}}-\frac{2-\sqrt{5}}{\sqrt{3}}-\frac{4\sqrt{15}-10\sqrt{3}}{15}\)
b, \(\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a-1}}+\frac{\sqrt{a-1}}{\sqrt{a}+1}\right)\)
c, \(\sqrt{4+\sqrt{7}-\sqrt{4-\sqrt{7}}}\)
d, \(6+2\sqrt{2}.3-\sqrt{4+\sqrt{2\sqrt{3}}}\)
e, \(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
Help me !!!
gpt : a) \(\frac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\frac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
b) \(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)
c) \(\sqrt[4]{1-x^2}+\sqrt[4]{1+x}+\sqrt[4]{1-x}=3\)