Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Toán Học
Xem chi tiết
Nguyễn Thanh Hằng
14 tháng 8 2021 lúc 23:53

\(\Delta'=b'^2-ac=\left(m-1\right)^2-\left(m^2-3\right)=4-2m\)

Để pt có 2 nghiệm pb : \(m< 2\)

Theo định lí vi - et :

\(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1.x_2=m^2-3\end{matrix}\right.\)

Mà \(x_1=3x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=m-1\\3x^2_2=m^2-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m-1}{4}\\x_2=\pm\dfrac{\sqrt{m^2-3}}{\sqrt{3}}\end{matrix}\right.\)

ha hoang le
Xem chi tiết
Nguyễn Huy Tú
7 tháng 3 2022 lúc 14:25

a, bạn tự làm 

b, Để pt có 2 nghiệm khi 

\(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\left(1\right)\\x_1x_2=2m-3\left(2\right)\end{matrix}\right.\)

Ta có \(x_1=2x_2\left(3\right)\)

Từ (1) ; (3) ta có \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2\left(m-1\right)\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2\left(m-1\right)}{3}\\x_1=\dfrac{4\left(m-1\right)}{3}\end{matrix}\right.\)

Thay vào (2) ta đc

\(\dfrac{8\left(m-1\right)^2}{9}=2m-3\Leftrightarrow8\left(m-1\right)^2=18m-27\)

\(\Leftrightarrow8m^2-16m+8=18m-27\Leftrightarrow8m^2-34m+35=0\)

\(\Leftrightarrow m=\dfrac{5}{2};m=\dfrac{7}{4}\)

Xem chi tiết
Nguyên
Xem chi tiết
Xem chi tiết
Nguyễn Linh Chi
26 tháng 5 2020 lúc 0:35

a) Xét \(\Delta'=\left(m-1\right)^2-\left(m^2-3\right)=-2m+4\)

phương trình có hai nghiệm <=> \(\Delta'\ge0\Leftrightarrow-2m+4\ge0\Leftrightarrow m\le2\)(@@) 

b) Gọi \(x_1;x_2\) là hai nghiệm của phương trình 

áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1x_2=m^2-3\\x_1+x_2=2\left(m-1\right)\end{cases}}\)

Không mất tính tổng quát: g/s: \(x_1=3x_2\)

=> \(4x_2=2\left(m-1\right)\Leftrightarrow x_2=\frac{m-1}{2}\)

=> \(x_1=\frac{3\left(m-1\right)}{2}\)

mà \(x_1x_2=m^2-3\)

=> \(\frac{3}{4}\left(m-1\right)^2=m^2-3\)

<=> \(3\left(m^2-2m+1\right)=4m^2-12\)

<=> \(\orbr{\begin{cases}m=-3+2\sqrt{6}\\m=-3-2\sqrt{6}\end{cases}}\) thỏa mãn 

Vậy ....

Khách vãng lai đã xóa
Chan
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 11:24

1: Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot\left(m+2\right)\left(3-m\right)\)

\(=\left(2m-2\right)^2+4\left(m+2\right)\left(m-3\right)\)

\(=4m^2-8m+4+4\left(m^2-3m+2m-6\right)\)

\(=4m^2-8m+4+4m^2-4m-24\)

\(=-12m-20\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-12m-20>0\)

\(\Leftrightarrow-12m>20\)

hay \(m< \dfrac{-5}{3}\)

Để phương trình có nghiệm kép thì Δ=0

\(\Leftrightarrow-12m-20=0\)

\(\Leftrightarrow-12m=20\)

hay \(m=\dfrac{-5}{3}\)

Để phương trình vô nghiệm thì Δ<0

\(\Leftrightarrow-12m-20< 0\)

\(\Leftrightarrow-12m< 20\)

hay \(m>\dfrac{-5}{3}\)

Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 11:26

2: ĐKXĐ: \(m\ne-2\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+2}=\dfrac{2m-2}{m+2}\\x_1\cdot x_2=\dfrac{3-m}{m+2}\end{matrix}\right.\)

Ta có: \(x_1+x_2=x_1x_2\)

\(\Leftrightarrow\dfrac{2m-2}{m+2}=\dfrac{3-m}{m+2}\)

Suy ra: 2m-2=3-m

\(\Leftrightarrow2m+m=3+2\)

\(\Leftrightarrow3m=5\)

hay \(m=\dfrac{5}{3}\)(thỏa ĐK)

Nguyễn Thanh Hải
Xem chi tiết
npclxh
29 tháng 3 2022 lúc 21:26

giải theo công thức là ra

   
Dũng Nguyễn tiến
Xem chi tiết
Lê Thị Thục Hiền
23 tháng 5 2021 lúc 20:14

\(3x^2-2\left(m+1\right)x+3m-5=0\)

Xét \(\Delta=4\left(m+1\right)^2-4.3.\left(3m-5\right)\)\(=4m^2-28m+64=4\left(m-\dfrac{7}{2}\right)^2+15>0\forall m\)

=> pt luôn có hai nghiệm pb

Kết hợp viet và giả thiết có hệ: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{3}\\x_1=3x_2\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_2+x_2=\dfrac{2m+2}{3}\\x_1=3x_2\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\x_1=\dfrac{m+1}{2}\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{\left(m+1\right)}{6}.\dfrac{\left(m+1\right)}{2}=\dfrac{3m-5}{3}\)\(\Leftrightarrow m^2-10m+21=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=7\\m=3\end{matrix}\right.\)

Tại m=7 thay vào pt ta tìm được \(\left[{}\begin{matrix}x=4\\x=\dfrac{4}{3}\end{matrix}\right.\)

Tại m=3 thay vào pt ta tìm được \(\left[{}\begin{matrix}x=2\\x=\dfrac{2}{3}\end{matrix}\right.\)

 

Chanhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2023 lúc 17:39

loading...  loading...  loading...  

Hưởng T.
Xem chi tiết
tran hong anh
23 tháng 7 2021 lúc 9:06

còn cái nịt