Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoai Bao Tran
Xem chi tiết
Akai Haruma
27 tháng 6 2020 lúc 0:46
shitbo
Xem chi tiết
Nguyễn Khang
26 tháng 9 2019 lúc 9:10

Bài này mình gặp rất nhiều khó khăn khi biến đổi, và vì biểu thức quá dài nên mình phải dùng ký hiệu \(\Sigma_{sym}\), có thể sẽ gặp phải những sai sót-> sai cả bài, do đó bài làm bên dưới chỉ nêu hướng làm thôi (quy đồng).

Nhân hai vế của BĐT cho \(2\left(ab+bc+ca\right)\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)\) BĐT cần chứng minh tương đương:

\(\Leftrightarrow\)\(3\Sigma_{sym}a^3b^3c+\Sigma_{sym}ab^4c^2\ge3\Sigma_{sym}a^5bc+\Sigma_{sym}a^4b^3\)

\(\Leftrightarrow3\Sigma_{sym}\left(a^3b^3c-ab^5c\right)+\Sigma_{sym}b^4c^2a\ge\Sigma_{sym}a^4b^3\)

Do \(3\Sigma_{sym}\left(a^3b^3c-ab^5c\right)\ge0\) theo định lí Muirhead.

Do đó ta sẽ chứng minh: \(\Sigma_{sym}b^4c^2a\ge\Sigma_{sym}a^4b^3\). Và chịu:(

tth_new
17 tháng 2 2020 lúc 8:42

Không mất tính tổng quát, ta giả sử c là số nhỏ nhất.

Đặt \(f\left(a;b;c\right)=VP-VT\) và \(t=\frac{a+b}{2}\)

Trước hết ta chứng minh \(f\left(a;b;c\right)\ge f\left(t;t;c\right)\).

Xét hiệu hai vế và nó tương đương ta thấy nó \(\ge0\) do giả sử:

Vậy ta chỉ cần chứng minh \(f\left(t;t;c\right)\ge0\Leftrightarrow\frac{\left(c-t\right)^2\left(3c^2+3ct+2t^2\right)}{2t\left(c+t\right)\left(2c+t\right)\left(c^2+t^2\right)}\ge0\) (đúng)

Vậy ta có đpcm.

P/s: Lần sau cho đề đẹp đẹp tí, kiểu này quy đồng mà không có máy tính thì cực chetme:(

Khách vãng lai đã xóa
tth_new
8 tháng 4 2020 lúc 13:20

Giả sử $c=\min\{a,b,c\}$. Sau khi quy đồng ta cần chứng minh:

$ \left( a-c \right)  \left( -c+b \right)  \left( {a}^{3}{b}^{2}+3\,{a}
^{3}bc-4\,{a}^{3}{c}^{2}+{a}^{2}{b}^{3}-{a}^{2}{b}^{2}c+7\,{a}^{2}b{c}
^{2}-7\,{a}^{2}{c}^{3}+3\,a{b}^{3}c+7\,a{b}^{2}{c}^{2}+17\,ab{c}^{3}-4
\,{b}^{3}{c}^{2}-7\,{b}^{2}{c}^{3} \right) +c \left( a-b \right) ^{2}
 \left( 3\,{a}^{3}b+3\,{a}^{2}{b}^{2}+6\,{a}^{2}bc-3\,{a}^{2}{c}^{2}+3
\,a{b}^{3}+6\,a{b}^{2}c-2\,ab{c}^{2}-2\,{c}^{3}a-3\,{b}^{2}{c}^{2}-2\,
{c}^{3}b+7\,{c}^{4} \right) \geqq 0$

Với $c=\min\{a,b,c\}$  thì mấy cụm phía sau rất dễ xử lí (a sẽ gửi cách xử trong tin nhắn).

Done.

Khách vãng lai đã xóa
Phương Tuyết
Xem chi tiết
Nguyễn Xuân Đình Lực
Xem chi tiết
Akai Haruma
27 tháng 6 2020 lúc 0:45

Lời giải:

Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.

BĐT cần chứng minh tương đương với:

$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$

$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$

Áp dụng BĐT Bunhiacopxky:

$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$

$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$

BĐT $(*)$ đúng nên ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

tthnew
4 tháng 7 2020 lúc 10:04

SOS là ra, khá đơn giản. Ta có:

$$\text{VP}-\text{VT}=ab \left( -c+a \right) ^{2}+ca \left( b-c \right) ^{2}+cb \left( a-b
\right) ^{2}\geqq 0.$$

Đẳng thức xảy ra khi $a=b=c.$

Nguyễn Xuân Đình Lực
Xem chi tiết
Phùng Minh Quân
27 tháng 6 2020 lúc 19:33

a,b,c>0 

\(VP-VT=a^3b+b^3c+c^3a-abc\left(a+b+c\right)=abc\Sigma\frac{\left(a-b\right)^2}{a}\ge0\)

Khách vãng lai đã xóa
^($_DUY_$)^
Xem chi tiết
Hồng Nhan
19 tháng 11 2023 lúc 14:55

loading...

Mai Thắng
Xem chi tiết
Xuân Dũng Đào
10 tháng 9 lúc 21:20

Đặt:

\(p = a + b + c , q = a b + b c + c a , r = a^{2} + b^{2} + c^{2} .\)

Khi đó, điều kiện bài toán trở thành:

\(3 r + q = 12.\)

Ta cần chứng minh:

\(22 \textrm{ }\textrm{ } \leq \textrm{ }\textrm{ } \frac{r}{p + q} \textrm{ }\textrm{ } \leq \textrm{ }\textrm{ } 32.\)

Bước 1. Biểu diễn lại mẫu số

Từ hằng đẳng thức:

\(p^{2} = a^{2} + b^{2} + c^{2} + 2 \left(\right. a b + b c + c a \left.\right) = r + 2 q .\)

Vậy:

\(p + q = \left(\right. p^{2} - r \left.\right) + \left(\right. p - r \left.\right) ? ?\)

👉 Ở đây có chút khó khăn: trực tiếp so sánh tỉ số \(\frac{r}{p + q}\) với số nguyên (22,32) là không khớp — vì bài toán gốc em chép có thể bị sai số trong đề.

⛔ Lý do: Với điều kiện \(3 r + q = 12\), thì \(r\)\(q\) tối đa chỉ cỡ 12, nên tỉ số \(\frac{r}{p + q}\) chắc chắn nhỏ (≤ vài đơn vị). Không thể lớn đến 22 hay 32 được.

Nhận xét

Có thể trong đề gốc:

Bất đẳng thức cần chứng minh là:

\(\frac{2}{2} \leq \frac{a^{2} + b^{2} + c^{2}}{a + b + c + a b + b c + c a} \leq \frac{3}{2}\)

hoặc tương tự (số 22 và 32 có thể là \(\frac{2}{2}\)\(\frac{3}{2}\), nhưng bị gõ nhầm khi soạn đề 🤔).

👉 Em kiểm tra lại đề gốc xem có phải dấu ngoặc hay dấu phân số bị lệch khi copy không. Vì theo điều kiện \(3 \left(\right. a^{2} + b^{2} + c^{2} \left.\right) + a b + b c + c a = 12\), chắc chắn kết quả bất đẳng thức phải là những con số nhỏ (dạng \(\frac{2}{2} , \frac{3}{2} , 2 , 3\)), chứ không thể là 22 hoặc 32.

Mai Thắng
10 tháng 9 lúc 22:08

đề không sai nhé mọi người


ONLINE SWORD ART
Xem chi tiết
lê thành đạt
18 tháng 4 2022 lúc 21:08

non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì

 

lê thành đạt
18 tháng 4 2022 lúc 21:08

đúng trẻ trâu

Lizy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2024 lúc 22:38

Trước hết theo BĐT Schur bậc 3 ta có:

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)

\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)

Áp dụng (1):

\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)