non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì
non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì
Cho a , b , c là ba cạnh của một tam giác . Chứng minh rằng : \(ab+bc+ca\le a^2+b^2+c^2<2\left(ab+bc+ca\right)\).
a, Cho a,b,c là độ dài ba cạnh của một tam giác. CMR,
\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b, Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
\(10x^2+50y^2+42xy
+14x-6y+57< 0\)
Cho a, b,c là độ dài 3 cạnh tam giác
CM \(ab+bc+ac\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng \(^{a^2+b^2+c< 2}\) (ab+bc+ca)
cho tam giác ABC có độ dài ba cạnh là a,b,c sao cho a^2+b^2+c^2 = ab+bc+ca . chứng minh rằng tam giác ABC là tam giác đều
CHO TAM GIÁC ABC, ĐẶT ĐỘ DÀI 3 CẠNH BC=a, CA=b, AB=c
CHO BIẾT: \(\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}=\frac{ca}{b+c}+\frac{ab}{c+a}+\frac{bc}{a+b}\)
A) CM TAM GIÁC ABC CÂN
B) NẾU CHO THÊM: \(c^4+abc\left(a+b\right)=c^2\left(a^2+b^2\right)+\left(c+b\right)\left(c-b\right)bc+\left(c-a\right)\left(c+a\right)ac\) .TÍNH CÁC GÓC CỦA TAM GIÁC ABC
Cho a,b,c là độ dài của ba cạnh tam giác.
CMR: ab + bc + ca\(\le a^2+b^2+c^2\)< 2.(ab + bc + ca).
cho a ,b ,c là độ dài 3 cạnh tam giác . Chứng minh (a + b + c)^2 < 4(ab+ bc + ca)
Cho tam giác ABC có độ dài ba cạnh là a, b, c và ( a + b + c )^2 = 3( ab + bc + ca ). Chứng minh tam giác ABC đều.