Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
10x2+50y2+42xy+14x-6y+57<0
Tìm tất cả cặp số nguyên x,y thỏa mãn
10x2+50y2+42xy+14x-6y+57<0
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn
\(10x^2+50y^2+42xy+14x-6y+57<0\)
Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh rằng:
\(ab+bc+ca\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
Cho a,b,c là độ dài của ba cạnh tam giác.
CMR: ab + bc + ca\(\le a^2+b^2+c^2\)< 2.(ab + bc + ca).
Cho a , b , c là ba cạnh của một tam giác . Chứng minh rằng : \(ab+bc+ca\le a^2+b^2+c^2<2\left(ab+bc+ca\right)\).
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
Cho a, b,c là độ dài 3 cạnh tam giác
CM \(ab+bc+ac\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Cho a,b,c là ba cạnh của một tam giác. CMR:
\(\left(a+b+c\right)\left(\frac{3a-b}{a^2+ab}+\frac{3b-c}{b^2+bc}+\frac{3c-a}{c^2+ca}\right)\le9\)