bài 2 :(P):y = x bình và đt (d ):y = 2x - m bình + 9
a;Tìm m để đường thẳng d cắt P tại hai điểm nằm về hai phía của trục tung
Bài 1 Cho parabol (P) và đt (d) y= -2x +1 -m
a, Tìm tọa độ gđ của (P) VÀ (d) khi m = -2
b, Tìm m để (d) cắt (P) tại 2 điểm có hoành độ \(x_1,x_2\) thỏa mãn \(x^2_1+x_2^2=x_1.x_2+8\)
a: Khi m=-2 thì y=-2x+1-(-2)=-2x+1+2=-2x+3
PTHĐGĐ là:
x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
=>y=9 hoặc y=1
b: PTHĐGĐ là:
x^2+2x+m-1=0
\(\Delta=2^2-4\left(m-1\right)=4-4m+4=-4m+8\)
Để phương trình có hai nghiệm thì -4m+8>=0
=>m<=2
x1^2+x2^2=x1*x2+8
=>(x1+x2)^2-2x1x2-x1x2=8
=>(-2)^2-3(m-1)=8
=>4-3m+3=8
=>7-3m=8
=>3m=-1
=>m=-1/3
1 tìm m để đt y=(m^2+1)x+m song song với đt y=2x-1
2 cmr A(1;-1) b(3;1) c(0;-2) thẳng hàng
9 tìm a,b đt y=ax+b cắt trục hoành tại điểm có hoành độ bằng -2 và cắt đt 2x-y=3 tại điểm có tung độ bằng -1
bài 2 :(P):y = x bình và đt (d ):y = 2x - m bình + 9
a;Tìm m để đường thẳng d cắt P tại hai điểm nằm về hai phía của trục tung
Phương trình hoành độ giao điểm: \(x^2-2x+m^2-9=0\) (1)
Để d cắt (P) tại 2 điểm nằm về 2 phía trục tung
\(\Leftrightarrow\left(1\right)\) có 2 nghiệm trái dấu
\(\Leftrightarrow m^2-9< 0\Rightarrow-3< m< 3\)
Đường thẳng y = ( m -3 ).x + 5 đi qua A(-5;1)
=> A(-5;1) thuộc hàm số y = ( m - 3 ).x + 5
1 = ( m - 3).(-5) + 5
1 = -5m + 15 + 5
1 = -5m + 20
-5m = -19
m = 19/5
Vậy m = 19/5 thì y = ( m - 3)x + 5 đi qua A(-5;1)
cho hsbn y=(m-2)x-2m+1 (m ≠2) có đt (d)
a, tìm m để ( d) cắt trục tung tại điểm có tung độ =11
b, Tìm m để (d) và 2 đường thẳng (d1) y=2x-5 và (d2) y=-3x+10 đồng quy
a: Thay x=0 và y=11 vào (d), ta được:
-2m+1=11
hay m=-5
Bài 3 cho parabol (P)\(y=x^2\) và đt (d) y =(2-m)x +m-3
a,CM : (d) và (P) luôn có điểm chung
b, Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) sao cho \(\left|x_1\right|+x^2_2=2\)
Em kiểm tra lại đề, đề bài sai
Ví dụ với \(m=0\) thì (d) là \(y=2x-3\), khi đó pt hoành độ giao điểm (P) và (d) là \(x^2=2x-3\Leftrightarrow x^2-2x+3=0\) vô nghiệm nên (d) và (P) ko có điểm chung
Bài 2: Viết các biểu thức sau dưới dạng bình phương một tổng a) x² + 6x + 9 b) x² + x + 1 Bài 3: Rút gọn biểu thức: a) (x +y)2+(x - y) Bài 4: Tìm x biết a) (2x + 1)²- 4(x + 2)²=9 b) (x+3)²-(x-4)( x + 8) = 1 Bài 5: Tính nhẩm: a) 19. 21 b) 29.31 c) 2xy² + x²y + 1 b)2(x - y)(x + y) +(x - y)²+ (x + y)² c) 3(x + 2)²+ (2x - 1)²- 7(x + 3)(x - 3) = 36 c) 39. 41: Bài 6: Chứng minh rằng các biểu thức sau luôn dương với mọi giá trị của biển x a) 9x² - 6x +2 b) x² + x + 1 Bài 7: Tìm GTNN của: a)A=x-3x+5 Bài 8: Tìm GTLNcủa: a) A = 4 - x² + 2x Bài 9: Tính giá trị của biểu thức A = x³+ 12x²+ 48x + 64 tai x = 6 C=x+9x+27x + 27 tại x= - 103 c) 2x² + 2x + 1. b) B = (2x - 1)² + (x + 2)² b) B = 4x - x² B=x −6x + 12x – 8 tại x = 22 D=x³15x² + 75x - 125 tai x = 25 Bài 10.Tìm x biết: a) (x - 3)(x + 3x +9)+x(x + 2)2 - x)=1 b)(x+1)- (x - 1) - 6(x - 1}} = Bài 11: Rút gọn: a) (x - 2) - x(x + 1)(x - 1) + 6x(x - 3) b)(x - 2)(x - 2x+4)(x+2)(x+2x+
Bài 8:
Ta có: \(A=-x^2+2x+4\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=1
Bài 2 Cho parabol (P) \(y=x^2\) và đt (d) \(y=2\left(m+1\right)x-m+4\)
a, Tìm tọa độ gđ của (P) VÀ (d) khi m = -5
b, Tìm m để (d) cắt (P) tại 2 điểm có hoành độ\(x_1,x_2\) sao cho \(A=|x_1-x_2|\) đạt GTNN và tìm GTNN đó
a: Khi m=-5 thì y=2(-5+1)x-(-5)+4
=>y=-8x+9
PTHĐGĐ là:
x^2+8x-9=0
=>(x+9)(x-1)=0
=>x=1 hoặc x=-9
=>y=1 hoặc y=81
b: \(A=\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\left(2m+2\right)^2-4\left(m-4\right)}\)
\(=\sqrt{4m^2+8m+4-4m+16}\)
\(=\sqrt{4m^2+4m+20}\)
\(=\sqrt{\left(2m+1\right)^2+19}>=\sqrt{19}\)
Dấu = xảy ra khi m=-1/2
Cho (P): y = 2x².
a) Vẽ (P).
b) Tùy theo m, hãy xét số giao điểm của đường thẳng y = mx – 1 với (P).
c) Lập PT đt song song với đt: y = 2x + 2010 và tiếp xúc với (P).
d) Tìm trên (P) điểm cách đều 2 trục tọa độ.Cho (P): y = 2x².
a) Vẽ (P).
b) Tùy theo m, hãy xét số giao điểm của đường thẳng y = mx – 1 với (P).
c) Lập PT đt song song với đt: y = 2x + 2010 và tiếp xúc với (P).
d) Tìm trên (P) điểm cách đều 2 trục tọa độ.