Em kiểm tra lại đề, đề bài sai
Ví dụ với \(m=0\) thì (d) là \(y=2x-3\), khi đó pt hoành độ giao điểm (P) và (d) là \(x^2=2x-3\Leftrightarrow x^2-2x+3=0\) vô nghiệm nên (d) và (P) ko có điểm chung
Em kiểm tra lại đề, đề bài sai
Ví dụ với \(m=0\) thì (d) là \(y=2x-3\), khi đó pt hoành độ giao điểm (P) và (d) là \(x^2=2x-3\Leftrightarrow x^2-2x+3=0\) vô nghiệm nên (d) và (P) ko có điểm chung
Bài 2 Cho parabol (P) \(y=x^2\) và đt (d) \(y=2\left(m+1\right)x-m+4\)
a, Tìm tọa độ gđ của (P) VÀ (d) khi m = -5
b, Tìm m để (d) cắt (P) tại 2 điểm có hoành độ\(x_1,x_2\) sao cho \(A=|x_1-x_2|\) đạt GTNN và tìm GTNN đó
Bài 1 cho parabol (P) \(y=x^2\) và đ/t (d) \(y=-mx+2\)
Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) sao cho\(x_1^2x_2+x_1x_2^2=2020\)
Bài 1 Cho parabol (P) và đt (d) y= -2x +1 -m
a, Tìm tọa độ gđ của (P) VÀ (d) khi m = -2
b, Tìm m để (d) cắt (P) tại 2 điểm có hoành độ \(x_1,x_2\) thỏa mãn \(x^2_1+x_2^2=x_1.x_2+8\)
Cho parabol (P): \(y=-\frac{1}{2}x^2\) và đường thẳng (d) đi qua điểm M (1;-2) và nhận k làm hệ số góc.
a, CMR: (d) luôn cắt (P) tại hai điểm phân biệt với mọt giá trị của k.
b, Tìm k để (d) cắt (P) tại hai điểm phân biệt có hoành độ x\(_{1,}x_2\)thỏa mãn \(x_1^2+x^2_2-2x_1x_2.\left(x_1+x_2\right)=16\)
Bài 1 : cho (P)\(y=x^2\) và (d) \(y=2mx-2m+2\)
Tìm m để (d) cắt (P) tại 2 điểm nằm ở 2 phía trục tung có hoàng độ \(x_1,x_2\) thỏa mãn \(x_1^2-21=6x_1x_2-x_2^2\)
Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m + 1)x - 4
a) Tìm m để đường thẳng (d) và parabol (P) cắt nhau tại hai điểm phân biệt
b) Gọi A (x1;y1) và B (x2;y2) là hai giaoo điểm của đường thẳng (d) với parabol (P). Tìm m để \(\sqrt{x_1}-\sqrt{x_2}=2\)
Cho Parabol (P): \(y=-x^2\) và đường thẳng (d): \(y=2x+m-1\).Tìm các giá trị của m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) thỏa mãn \(x_1^3-x_2^3+x_1x_2=4\).
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y=x2 và đường thẳng (d): y=2(m-1)x+5-2m (m là tham số)
a) Vẽ đồ thị parabol (P).
b) Biết đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Gọi hoành độ giao điểm của đường thẳng (d) và parabol (P) là x1, x2. Tìm m để x+x=6
Cho \(\left(P\right):y=x^2\) và \(\left(d\right):y=2x+3m\)
Tìm tất cả cavs giá trị của m để (d) cắt (p) tại 2 điểm phân biệt có hoành độ x1, x2 sao cho \(\left|x_1\right|+\left|x_2\right|\ge4\)